K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

a)A=x(x+1)(x+2)(x+3)

\(=\left(x^2+3x\right)\left(x^2+3x+2\right)\)

Đặt \(t=x^2+3x\) ta đc:

\(t\left(t+2\right)\)\(=t^2+2t+1-1\)

\(=\left(t+1\right)^2-1\ge-1\)

Dấu = khi \(t=-1\Rightarrow x^2+3x=-1\)\(\Rightarrow\)\(x=\frac{-3\pm\sqrt{5}}{2}\)

Vậy MinA=-1 khi \(x=\frac{-3\pm\sqrt{5}}{2}\)

b)\(B=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Với a,b,c dương ta áp dụng Bđt Cô si 3 số:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Dấu = khi a=b=c

Vậy MinB=9 khi a=b=c

c)\(C=a^2+b^2+c^2\)

Áp dụng Bđt Bunhiacopski 3 cặp số ta có:

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(1a+1b+1c\right)^2=\left(\frac{3}{2}\right)^2=\frac{9}{4}\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\frac{9}{4}\)

\(\Rightarrow a^2+b^2+c^2\ge\frac{3}{4}\)

\(\Rightarrow C\ge\frac{3}{4}\)

Dấu = khi \(a=b=c=\frac{1}{2}\)

Vậy MinC=\(\frac{3}{4}\) khi \(a=b=c=\frac{1}{2}\)

b: Thay \(x=7-2\sqrt{6}\) vào A, ta được:

\(A=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-7+2\sqrt{6}-5\left(\sqrt{6}+1\right)-1}\)

\(=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-8+2\sqrt{6}-5\sqrt{6}-5}\)

\(=\dfrac{-3\sqrt{6}+3}{13+3\sqrt{6}}=\dfrac{93-48\sqrt{6}}{115}\)

18 tháng 9 2017

Cau 1: Ta có: 
A=x^2 - 2*3x + 9 +2(y^2 - 2y +1) + 7 
=(x-3)^2 +2(y-1)^2 +7 >+ 7 
=> minA= 7 <=> x=3 và y=1

18 tháng 9 2017

câu 1 đâu có y

27 tháng 9 2016

Áp dụng BĐT Cô-si cho 2 số dương ta có:

\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\left(1\right)\)

\(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\left(2\right)\)

\(\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ac}\left(2\right)\)

Từ (1) ;(2) và (3) suy ra:

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}=6\)

Vậy \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge6\).Dấu "=" xảy ra <=>\(\hept{\begin{cases}a+b+c=6abc\\\frac{1}{a^2}=\frac{1}{b^2}=\frac{1}{c^2}\end{cases}=>a=b=c=\frac{1}{\sqrt{2}}}\)

27 tháng 9 2016

A = \(x-2\sqrt{xy}+3y-2\sqrt{x}+1\)

\(=\left(\frac{x}{3}-\frac{2\times\sqrt{3}\sqrt{xy}}{\sqrt{3}}+3y\right)+\left(\frac{2x}{3}-\frac{2\times\sqrt{2}\times\sqrt{3}\sqrt{x}}{\sqrt{2}\times\sqrt{3}}+\frac{3}{2}\right)-\frac{1}{2}\)

\(=\left(\frac{\sqrt{x}}{\sqrt{3}}-\sqrt{3y}\right)^2+\left(\sqrt{\frac{2x}{3}}-\sqrt{\frac{3}{2}}\right)^2-\frac{1}{2}\)

\(\ge-\frac{1}{2}\)

mấy hình ảnh này ko ăn khớp với đề bài

ko hiểu gì cả oho

1 tháng 5 2019

Áp dụng bdtd quen thuộc : 

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

1 tháng 5 2019

Chứng minh bđt nha ( quên mất )

Áp dụng bđt Cauchy :

\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}}\)

Nhân từng vế của 2 bđt ta được đpcm

Dấu "=" khi \(a=b=c\)

22 tháng 11 2020

MK KO BT MK MỚI HO C LỚP 6

AI HỌC LỚP 6 CHO MK XIN