K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

5040 bạn ơi

19 tháng 8 2017

Vì : a > 0 , b > 0 => a2 > 0 , b2 > 0 => a3 > 0 , b3 > 0

Mà : a + b = a2 + b2 = a3 + b3

Nên : a + b = 0 

=> a = 0 , b = 0

=> P = a2011 + b2015 = 0 + 0 = 0

1 tháng 8 2018

\(a^2+b^2-2ab=13-2.6=1=\left(a-b\right)^2\)

\(\Rightarrow\orbr{\begin{cases}a-b=1\\a-b=-1\end{cases}}\)

\(A=a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

Với \(a-b=1\)

\(\Rightarrow A=1.\left(13+6\right)=19\)

Với \(a-b=-1\)

\(\Rightarrow A=-1\left(13+6\right)=-19\)

Vậy \(\orbr{\begin{cases}A=19\\A=-19\end{cases}}\)

b )   \(a^2+b^2+2ab=13+2.6=25=\left(a+b\right)^2\)

\(\Rightarrow\orbr{\begin{cases}a+b=5\\a+b=-5\end{cases}}\)

\(B=a^2-b^2=\left(a-b\right)\left(a+b\right)\)

Với \(a-b=1;a+b=5\Rightarrow B=1.5=5\)

Với \(a-b=1;a+b=-5\Rightarrow B=1.-5=-5\)

Tương tự với \(\hept{\begin{cases}a-b=-1;a+b=-5\\a-b=-1;a+b=5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}B=5\\B=-5\end{cases}}\)

Vậy ...

Chúc bạn học tốt !!! 

1 tháng 8 2018

Làm lại : 

a )  Do \(a>b>0\)

\(\Rightarrow a-b>0\)

\(a^2+b^2-2ab=13-2.6=1=\left(a-b\right)^2\)

\(\Rightarrow a-b=1\)

\(A=a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(\Rightarrow A=1.\left(13+6\right)=19\)

Vậy \(A=19\)

b )  \(B=a^2-b^2=\left(a-b\right)\left(a+b\right)=1\left(a+b\right)=a+b\)

Do \(a>b>0\Rightarrow a+b>0\)

\(a^2+b^2+2ab=13+2.6=25=\left(a+b\right)^2\)

\(\Rightarrow a+b=5\)

Mà \(B=a+b\)

\(\Rightarrow B=5\)

Vậy \(B=5\)

19 tháng 12 2016

Có: \(a^2+b^2=1-2ab\)

\(\Rightarrow a^2+b^2+2ab=1\Rightarrow\left(a+b\right)^2=1\)

Mà: \(a>0;b>0\Rightarrow a+b>0\)

Do đó: \(a+b=1\)

Có: \(M=a^3+b^3+3ab=a^3+b^3+3ab\left(a+b\right)=\left(a+b\right)^3=1^3=1\)

19 tháng 12 2016

Ta có : M=a3+b3+3ab

=(a+b)(a2-ab+b2)+3ab=(a+b)(a2+b2-ab)+3ab

Ma : a2+b2=1-2ab 

\(\Rightarrow\)(a+b)(a2+b2-ab)+3ab

=(a+b)(1-2ab-ab)+3ab

=(a+b)(1-3ab)+3ab

=a+b

​Ma : a và b là hai số dương \(\Rightarrow\)a>0 va b>0
\(\Rightarrow\)Gia tri cua bieu thuc M=a3+b3+3ab = a+b .

30 tháng 9 2018

MÀY vào câu hỏi tương tự .

Tao không rảnh

Ok?

30 tháng 9 2018

a+b+c=1 <=> a+b=1-c

+) Nếu 1-c=0 => a+b=0 <=> a=-b

=> A = a2015+b2015+c2015

A = (-b)2015+b2015+c2015

A = c2015 => A = 1 (Vì 1-c=0) (1)

Ta có: a3+b3+c3=1

a3+b3=1-c3

(a+b)(a2-ab+b20=(1-c)(1+c+c2)

=> (1-c)(a2-ab+b2)=(1-c)(1+c+c2)

=> a2-ab+b2=1+c+c2

(a+b)2-3ab=(1-c)2+3c

=> -3ab=3c <=> -ab=c

Thay -ab = c vào a+b+c=1, ta có:

a+b+(-ab)=1 <=> a+b-ab-1=0 <=> a(1-b)-(1-b)=0 <=> (a-1)(1-b)=0

=> a-1=0 hoặc 1-b = 0 <=> a=1 hoặc b=1

+) Nếu a=1 => b+c=0 <=> b=-c

=> A=a2015+b2015+c2015

=> A=a2015+b2015-b2015

=> A=a2015 => A=1 (2)

+) Nếu b=1 => a+c=0 <=>a=-c

=> A=a2015+b2015+c2015

=> A=a2015+b2015+-a2015

=> A=b2015 => A=1 (3)

Từ (1)(2)(3) => A = 1

Vậy A = 1 với a+b+c=1 và a3+b3+c3=1

b) B = x2-3x+2016

B=x2-3x+2,25+2013,75

B=(x-1,5)2+2013,75

Vì (x-1,5)2 ≥ 0 => (x-1,5)2+2013,75 ≥ 2013,75

=> B ≥ 2013,75

=> GTNN của B bằng 2013,75

Dấu '=' xảy ra khi (x-1,5)2=0 <=> x-1,5=0 <=> x=1,5

Vậy GTNN của B bằng 2013,75 tại x = 1,5

19 tháng 2 2019

\(B=\frac{16}{\left(a-b\right)\left(a+b\right)}\)

Ta có : \(a^2+2ab+b^2=10+2ab=16\)

<=>\(\left(a+b\right)^2=16\) Vì a, b đều dương nên ta có : \(a+b=4\)

Mặt khác ta lại có : \(a^2-2ab+b^2=10-2ab=4\)

<=> \(\left(a-b\right)^2=4\)<=> \(\orbr{\begin{cases}a-b=4\\a-b=-4\end{cases}}\)

=> Bạn thay vào B tính nha

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right]=0\)

Do \(a+b+c\ne0\) nên \(\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab=0\)

\(\Leftrightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-bc+c^2\right)+\left(c^2-ca+a^2\right)=0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)

\(\Rightarrow\)\(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

...

2 tháng 12 2018

Cảm ơn bạn nha

AH
Akai Haruma
Giáo viên
26 tháng 10 2019

Lời giải:

Từ \(a+b=a^2+b^2=a^3+b^3\)

\(\Rightarrow \left\{\begin{matrix} a^2+b^2-a-b=0\\ a^3+b^3-a^2-b^2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a(a-1)+b(b-1)=0\\ a^2(a-1)+b^2(b-1)=0\end{matrix}\right.\)

\(\Rightarrow a^2(a-1)-a(a-1)+b^2(b-1)-b(b-1)=0\)

\(\Leftrightarrow a(a-1)^2+b(b-1)^2=0\)

Với mọi $a,b>0$ thì $a(a-1)^2\geq 0; b(b-1)^2\geq 0$

Do đó để tổng của chúng bằng $0$ thì $a(a-1)^2=b(b-1)^2=0$

$\Rightarrow a=b=1$ (do $a,b>0$)

Khi đó $P=a^{2015}+b^{2015}=1+1=2$

AH
Akai Haruma
Giáo viên
3 tháng 10 2019

Lời giải:

Từ \(a+b=a^2+b^2=a^3+b^3\)

\(\Rightarrow \left\{\begin{matrix} a^2+b^2-a-b=0\\ a^3+b^3-a^2-b^2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a(a-1)+b(b-1)=0\\ a^2(a-1)+b^2(b-1)=0\end{matrix}\right.\)

\(\Rightarrow a^2(a-1)-a(a-1)+b^2(b-1)-b(b-1)=0\)

\(\Leftrightarrow a(a-1)^2+b(b-1)^2=0\)

Với mọi $a,b>0$ thì $a(a-1)^2\geq 0; b(b-1)^2\geq 0$

Do đó để tổng của chúng bằng $0$ thì $a(a-1)^2=b(b-1)^2=0$

$\Rightarrow a=b=1$ (do $a,b>0$)

Khi đó $P=a^{2015}+b^{2015}=1+1=2$