Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đơn giản biểu thức ta được:
\(B=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{\left(x-1\right)\left(y-1\right)}{xy}\)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{\left(-x\right).\left(-y\right)}{xy}=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)
\(=1+\frac{1}{xy}+\left(\frac{1}{x}+\frac{1}{y}\right)=1+\frac{1}{xy}+\frac{x+y}{xy}\)
\(=1+\frac{1}{xy}+\frac{1}{xy}=1+\frac{2}{xy}\)
Ta bắt đầu tìm \(MIN:\)
Áp dụng BĐT \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow P\ge1+2\div\frac{1}{4}=9\)
Dấu "=" xảy ra \(\Leftrightarrow\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=9\Leftrightarrow x=y=\frac{1}{2}\)
Vậy \(MIN_B=9\Leftrightarrow x=y=\frac{1}{2}\)
Tìm \(MAX\) cho bạn luôn:
Ta đặt: \(x=\sin^2\alpha;y=\cos^2\alpha\left(ĐK:a\ne\frac{\pi}{4}+k\pi\right)\)
Ta có: \(B=\left(1-\frac{1}{\sin^4\alpha}\right)\left(1-\frac{1}{\cos^4\alpha}\right)\)
\(=\frac{\left(\sin^2\alpha-1\right)\left(\sin^2\alpha+1\right)\left(\cos^2\alpha-1\right)\left(\cos^2\alpha+1\right)}{\sin^4\alpha.\cos^4\alpha}\)
\(=\frac{\left(\sin^2\alpha.\cos^2\alpha\right)\left(\sin^2\alpha+1\right)\left(\cos^2\alpha+1\right)}{\sin^4\alpha.\cos^4a}\)
\(=\frac{\sin^2\alpha.\cos^2\alpha+2}{\sin^2\alpha.\cos^2\alpha}=1+\frac{2}{\sin^2\alpha.\cos^2\alpha}=1+\frac{8}{\sin^22\alpha}\)
Để \(B_{max}\Leftrightarrow\sin^22a\) nhỏ nhất \(\Rightarrow\cos^22\alpha\) tiến lên 1
\(\Rightarrow\alpha\) tiến đến 0 hoặc \(\pi\Rightarrow x\) hoặc \(y\) tiến đến 0
Vậy không tìm được \(B_{max}\)
\(a+b+c=1\)
\(\Rightarrow\left(a+b+c\right)^2=1\)
\(\Rightarrow\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=1-2\left(ab+bc+ca\right)\)
\(\Rightarrow a^2+b^2+c^2=1-2\left(ab+bc+ca\right)\)
Lại có:
\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)
\(\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)
\(\Rightarrow abc\le\frac{ab+bc+ca}{9}\)
Khi đó:
\(M\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)
\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)
\(\ge\frac{9}{\left(a+b+c\right)^2}+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}=21+9=30\)
Dấu "=" xảy ra tại \(a=b=c=\frac{1}{3}\)
\(B=\frac{x^2-2}{x^2+1}=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)
\(B_{min}\Rightarrow\left(\frac{3}{x^2+1}\right)_{max}\Rightarrow\left(x^2+1\right)_{min}\)
\(x^2+1\ge1\). dấu = xảy ra khi x2=0
=> x=0
Vậy \(B_{min}\Leftrightarrow x=0\)
ta có: \(x^2+2x-2=x^2+2x+1^2-3=\left(x+1\right)^2-3\ge-3\)
dấu = xảy ra khi \(x+1=0\)
\(\Rightarrow x=-1\)
Vậy\(\left(x^2+2x-2\right)_{min}\Leftrightarrow x=-1\)
Với a, b dương:
\(8^2=\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)^2\ge\frac{4}{\sqrt{ab}}\)
\(\Rightarrow\frac{1}{\sqrt{ab}}\le\frac{64}{4}=16\)
max A=16 khi a=b=1/4
\(S=\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\)
\(S=\left(1+\frac{1}{1-b}\right)\left(1+\frac{1}{1-a}\right)\)
\(S=\frac{1-b+1}{1-b}\times\frac{1-a+1}{1-a}\)
\(S=\frac{\left(2-b\right)\left(2-a\right)}{\left(1-b\right)\left(1-a\right)}\)
\(S=\frac{4-2a-2b+ab}{1-a-b+ab}=\frac{4-2\left(a+b\right)+ab}{1-\left(a+b\right)+ab}\)
\(S=\frac{4-2+ab}{1-1+ab}=\frac{2+ab}{ab}=1+\frac{2}{ab}\)(*)
từ \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2-2ab\ge0\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow4ab\le1\Leftrightarrow ab\le\frac{1}{4}\Leftrightarrow\frac{1}{ab}\ge4\)
\(\Leftrightarrow\frac{2}{ab}\ge8\)(1)
thay (1) vào (*) có
\(S=1+\frac{2}{ab}\ge1+8=9\)
vậy GTNN của \(S=9\Leftrightarrow x=y=\frac{1}{2}\)
Cảm ơn bạn vì đã giúp đỡ mình! Thanks very much!