K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2022

3a2+3b2=10ab

<=>3a2-10ab+3b2=0

<=>3a2-9ab-ab+3b2=0

<=>3a(a-3b)-b(a-3b)=0

<=>(3a-b)(a-3b)=0

<=>\(\hept{\begin{cases}3a-b=0\\a-3b=0\end{cases}\Leftrightarrow\hept{\begin{cases}3a=b\\a=3b\end{cases}}}\)

Có:a>b>0=>a=3b

Thay a=3b vào P ta đc:

 P=\(\frac{a-b}{a+b}=\frac{3b-b}{3b+b}=\frac{2b}{4b}=\frac{1}{2}\)

26 tháng 1 2022

gggggg

Ta có : \(3a^2+3b^2=10ab\)

\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2=\frac{16ab}{2}\left(1\right)\\\left(a-b\right)^2=\frac{4ab}{3}\left(2\right)\end{cases}}\)

Lấy (1) chia (2) ta được:

\(\left(\frac{a+b}{a-b}\right)^2=6\Rightarrow\frac{a+b}{a-b}=\sqrt{6}\)

6 tháng 9 2017

Xét: P2 = \(\dfrac{\left(a-b\right)^2}{\left(a+b\right)^2}=\dfrac{a^2-2ab+b^2}{a^2+2ab+b^2}=\dfrac{3a^2+3b^2-6ab}{3a^2+3b^2+6ab}=\dfrac{10ab-6ab}{10ab+6ab}=\dfrac{4ab}{16ab}=\dfrac{1}{4}\)

=> P = \(\dfrac{1}{2}\)

12 tháng 5 2018

Ta có : \(3a^2-10ab+3b^2=0\)

<=> \(\left(3a^2-9ab\right)+\left(3b^2-ab\right)=0\)

<=>  \(3a\left(a-3b\right)-b\left(3b-a\right)=0\)

<=> \(\left(3a-b\right)\left(a-3b\right)=0\)

<=>  \(\orbr{\begin{cases}b=3a\\a=3b\end{cases}}\)

Thiếu nhé : Riio Riyuko 

Ta có : \(3a^2-10ab+3b^2=0\)

\(\Leftrightarrow3a^2-9ab+3b^2-ab=0\)

\(\Leftrightarrow3a\left(a-3b\right)+b\left(3b-a\right)=0\)

\(\Leftrightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)

\(\Leftrightarrow\left(a-3b\right)\left(3a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a-3b=0\\3a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=3b\\3a=b\end{cases}\Leftrightarrow}\orbr{\begin{cases}a=3b\\a=\frac{1}{3}b\end{cases}}}\)

3 tháng 3 2016

 Cosi: ab <= 1/4 
Quy đồng P, ta đc: 
P = (2ab+1)/(ab+2). 
Ta cm P <= 2/3 
<=> 3(2ab+1) <= 2(ab+2) 
<=> ab<= 1/4 (đúng) 
Vậy maxP = 2/3 khi a=b =1/2

16 tháng 7 2015

\(3a^2+3b^2=10ab\Rightarrow3a^2-10ab+3b^2=0\Rightarrow3ab-9ab-ab-3b^2=0\)

\(=>3a\left(a-3b\right)-b\left(a-3b\right)=0\Rightarrow\left(3a-b\right)\left(3b-a\right)=0\)

=>3a  =b hoặc 3b = a  ( loại b>a>0 ) 

thay 3a = b ta có 

    \(P=\frac{3a-b}{3a+b}=\frac{2a}{4a}=\frac{1}{2}\)

7 tháng 11 2016

minh ko biet bai nay

Xin loi minh ko dup duoc

17 tháng 6 2019

#)Trả lời :

\(VT=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{a+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}\)

Tách VT = A + B và xét :

\(A=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3b}{1+a^2}=\)\(\sum\)\(\left(3a-\frac{3ab^2}{1+b^2}\right)\ge\)\(\sum\)\(\left(3a-\frac{3ab}{2}\right)\)

\(B=\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}=\)\(\sum\)\(\left(1-\frac{b^2}{1+b^2}\right)\ge\)\(\sum\)\(\left(1-\frac{b}{2}\right)\)

\(\Rightarrow VT=A+B=3+\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\)\(\sum\)\(ab=\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\ge\frac{15}{2}-\frac{3}{2}=6\)

( Do \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\))

Dấu ''='' xảy ra khi a = b = c = 1

Tham khảo nhé ^^