\(\frac{1}{a}+\frac{1}{b}=2\)

tìm giá trị lớn nhất của Q=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2021

B3 mk tìm đc cách giải r nhưng bạn nào muốn thì trả lời cg đc

31 tháng 8 2021

Các bạn giải giúp mình B2 và B5 nhé. Mấy bài kia mình giải được rồi.

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

3 tháng 5 2019

\(2=\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)\(\Leftrightarrow\)\(\frac{2}{\sqrt{ab}}\le2\)\(\Leftrightarrow\)\(\frac{1}{ab}\le1\)

\(Q=\frac{1}{4}\left(\frac{4}{\left(a^2+b\right)^2}+\frac{4}{\left(a+b^2\right)^2}\right)\le\frac{1}{4}\left(\frac{1}{a^2b}+\frac{1}{ab^2}\right)=\frac{1}{4ab}\left(\frac{1}{a}+\frac{1}{b}\right)\le\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=1\)

... 

3 tháng 5 2019

Hằng đẳng thức sai rồi nha Quân eii , nhìn lại cái bậc của ẩn a,b ở 2 mẫu số đi -__ 

NV
26 tháng 5 2019

\(\frac{1}{a}+\frac{1}{b}=2\Rightarrow ab=\frac{a+b}{2}\Rightarrow\frac{a+b}{2}\le\frac{\left(a+b\right)^2}{4}\Rightarrow a+b\ge2\)

\(Q\le\frac{1}{2\sqrt{a^4b^2}+2ab^2}+\frac{1}{2\sqrt{a^2b^4}+2a^2b}=\frac{1}{ab\left(a+b\right)}=\frac{2}{\left(a+b\right)^2}\le\frac{2}{2^2}=\frac{1}{2}\)

\(\Rightarrow Q_{max}=\frac{1}{2}\) khi \(a=b=1\)

26 tháng 5 2019

bạn dùng pp nào vậy có thể giảng cho mình đc không @@Nguyễn Việt Lâm

15 tháng 10 2020

3.

\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)

\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)

Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)

\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)

\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)

\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)

7 tháng 1 2020

4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)

\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)

\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)

Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)

Đẳng thức xảy ra khi ...(anh giải nốt ạ)

7 tháng 1 2020

@Cool Kid:

Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)

Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)

17 tháng 1 2018

Ta có:

\(a\ge2-b\)

\(\Rightarrow M\le\frac{1}{2-b+b^2}+\frac{1}{\left(2-b\right)^2+b}\)

\(=\frac{2b^2-4b+6}{b^4-4b^3+9b^2-10b+8}\)

\(=1-\frac{\left(b-1\right)^2\left(b^2-2b+2\right)}{b^4-4b^3+9b^2-10b+8}\le1\)

20 tháng 3 2018

chịu luôn

10 tháng 2 2022

- Theo giả thiết  a,b>0a,b>0  nên áp dụng bất đẳng thức Cô si ta được

                a^4+b^2\ge2a^2b\Rightarrow a^4+2ab^2+b^2\ge2a^2b+2ab^2a4+b22a2ba4+2ab2+b22a2b+2ab2

                                                 \Rightarrow a^4+2ab^2+b^2\ge2ab\left(a+b\right)a4+2ab2+b22ab(a+b)

                                                 \Rightarrow\frac{1}{a^4+2ab^2+b^2}\le\frac{1}{2ab\left(a+b\right)}a4+2ab2+b212ab(a+b)1,  (đẳng thức xảy ra khi và chỉ khi a=ba=b)

- Tương tự                                   \frac{1}{a^2+2a^2b+b^4}\le\frac{1}{2ab\left(a+b\right)}a2+2a2b+b412ab(a+b)1    ,    (đẳng thức xảy ra khi và chỉ khi  a=ba=b)

- Từ đó      Q\le\frac{1}{ab\left(a+b\right)}Qab(a+b)1

- Giả thiết  \left(a+b\right)\left(a+b-1\right)=a^2+b^2(a+b)(a+b1)=a2+b2 tương đương với a+b=2ab\Leftrightarrow ab=\frac{a+b}{2}a+b=2abab=2a+b(*)

- Do đó      Q\le\frac{2}{\left(a+b\right)^2}Q(a+b)22

  - Mà      ab\le\frac{\left(a+b\right)^2}{4}ab4(a+b)2    nên   \frac{a+b}{2}\le\frac{\left(a+b\right)^2}{4}\Rightarrow a+b\ge22a+b4(a+b)2a+b2  (do giả thiết  a,b>0a,b>0 ).

- Vì vậy   Q\le\frac{2}{2^2}Q222 

GTNN  là  \frac{1}{2}21 đạt khi và chỉ khi \left\{{}\begin{matrix}a=b\\a+b=2\end{matrix}\right.{a=ba+b=2\Leftrightarrow a=b=1a=b=1

 
 
10 tháng 2 2022

Áp dụng BĐT AM-GM ta có:

\(a^4+b^2+2ab^2\ge2\sqrt{a^4b^2}+2ab^2=2a^2b+2ab^2\)

\(b^4+a^2+2a^2b\ge2\sqrt{a^2b^4}+2a^2b=2ab^2+2a^2b\)

\(\Rightarrow Q\le\dfrac{1}{2a^2b+2ab^2}+\dfrac{1}{2ab^2+2a^2b}\)

Lại có: \(\left(a+b\right)\left(a+b-1\right)=a^2+b^2\)

\(\Leftrightarrow a^2+2ab-a+b^2-b=a^2+b^2\)

\(\Leftrightarrow2ab=a+b\ge2\sqrt{ab}\)\(\Rightarrow\left\{{}\begin{matrix}ab\ge1\\a+b\ge2\sqrt{ab}\ge2\end{matrix}\right.\)

Khi đó \(Q\le\dfrac{1}{2a^2b+2ab^2}+\dfrac{1}{2ab^2+2a^2b}\le\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)

Đẳng thức xảy ra khi \(a=b=1\)