Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)
\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)
Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)
\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)
\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)
\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)
2.
\(8ab-2=3\left(a^4+b^4\right)\ge6a^2b^2\Leftrightarrow3a^2b^2-4ab+1\le0\)
\(\Leftrightarrow\frac{1}{3}\le ab\le1\)
Khi đó:
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}-\frac{2}{ab+1}=\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\le0\)
\(\Rightarrow\frac{1}{a^2+1}+\frac{1}{b^2+1}\le\frac{2}{ab+1}\)
\(\Rightarrow P\le\frac{2}{ab+1}+\frac{ab}{3a^2b^2+1}\)
Đặt \(ab=x\Rightarrow\frac{1}{3}\le x\le1\Rightarrow P\le\frac{2}{x+1}+\frac{x}{3x^2+1}\)
\(P\le\frac{2}{x+1}+\frac{x}{3x^2+1}-\frac{7}{4}+\frac{7}{4}=\frac{-21x^3+7x^2-3x+1}{4\left(x+1\right)\left(3x^2+1\right)}+\frac{7}{4}\)
\(P\le\frac{\left(7x^2+1\right)\left(1-3x\right)}{4\left(x+1\right)\left(3x^2+1\right)}+\frac{7}{4}\le\frac{7}{4}\) ; \(\forall x\ge\frac{1}{3}\)
\(P_{max}=\frac{7}{4}\) khi \(x=\frac{1}{3}\) hay \(a=b=\frac{1}{\sqrt{3}}\)
1.
Ta có: \(4=a^2+b^2+c^2+abc\ge a^2+2bc+abc\)
\(\Leftrightarrow a^2-4+2bc+abc\le0\)
\(\Leftrightarrow\left(a+2\right)\left(a-2\right)+bc\left(a+2\right)\le0\)
\(\Leftrightarrow\left(a+2\right)\left(bc+a-2\right)\le0\)
\(\Leftrightarrow bc+a\le2\) (1)
Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng phía so với 1
Giả sử đó là b và c \(\Rightarrow\left(b-1\right)\left(c-1\right)\ge0\Leftrightarrow bc+1\ge b+c\Rightarrow abc+a\ge ab+ac\)
\(\Rightarrow abc\ge ab+ac-a\Rightarrow abc+2\ge ab+ac-a+2\)
Do đó ta chỉ cần chứng minh: \(ab+ac-a+2\ge ab+bc+ca\)
\(\Leftrightarrow a+bc\le2\) (đúng theo (1)) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
VÌ \(c\le3a\)
=> \(4\ge\left(a+2b\right)\left(\frac{1}{b}+\frac{3}{a}\right)\)
<=> \(\frac{5}{3}\ge\left(\frac{a}{b}+\frac{b}{a}\right)-\frac{b}{3a}\ge2-\frac{b}{3a}\)
=> \(\frac{b}{a}\ge1\)=> \(b\ge a\)
Khi đó
\(\frac{a^2+2b^2}{ac}\ge\frac{3a^2}{a.3a}=1\)(ĐPCM)
Dấu bằng xảy ra khi \(c=3a=3b\)
mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !
bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu
bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)
những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện
Từ \(\frac{a}{1+a}+\frac{2b}{1+b}=1\)
\(\Rightarrow3-\left(\frac{a}{1+a}+\frac{b}{1+b}+\frac{b}{1+b}\right)=2\)
\(\Rightarrow\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+b}=2\)
Easy ?
Bạn tham khảo:
Câu hỏi của Ngọc Ánh - Toán lớp 9 | Học trực tuyến