Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\frac{4bc-a^2}{bc+2a^2}.\frac{4ab-c^2}{ab+2c^2}.\frac{4ac-b^2}{ac+2b^2}\)
\(=\frac{4bc-\left(b+c\right)^2}{bc+2\left(b+c\right)^2}.\frac{4\left(-b-c\right)b-c^2}{\left(-b-c\right)b+2c^2}.\frac{4\left(-b-c\right)c-b^2}{\left(-b-c\right)c+2b^2}\)
\(=\frac{-\left(b-c\right)^2}{\left(c+2b\right)\left(b+2c\right)}.\frac{-\left(c+2b\right)^2}{-\left(b-c\right)\left(b+2c\right)}.\frac{-\left(b+2c\right)^2}{\left(b-c\right)\left(c+2b\right)}=1\)
\(S=\frac{1}{a^2+b^2}+\frac{1}{ab}+4ab=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(\frac{1}{4ab}+4ab\right)+\frac{1}{4ab}\)
\(\ge\frac{4}{a^2+b^2+2ab}+2.\sqrt{\frac{4ab}{4ab}}+\frac{1}{\left(a+b\right)^2}=4+2+1=7\)
Ta dễ có:
\(2+4ab=\left(a+b\right)^2+a+b\ge4ab+a+b\Rightarrow a+b\le2\)
\(P=\frac{a^2-2a+2}{b+1}+\frac{b^2-2b+2}{a+1}\)
\(=\frac{\left(a-1\right)^2}{b+1}+\frac{\left(b-1\right)^2}{a+1}+\frac{1}{a+1}+\frac{1}{b+1}\)
\(\ge\frac{\left(a+b-2\right)^2}{a+b+2}+\frac{4}{a+b+2}\ge\frac{\left(a+b-2\right)^2}{a+b+2}+1\ge1\)
Đẳng thức xảy ra tại \(a=b=1\)
hmm check hộ mình nhá
Ta có: \(\frac{a}{1+4b^2}=\frac{a\left(1+4b^2\right)-4ab^2}{1+4b^2}=a-\frac{4ab^2}{1+4b^2}\ge a-\frac{4ab^2}{2\sqrt{4b^2.1}}=a-\frac{2ab^2}{2b}=a-ab\)(bđt cosi)
CMTT: \(\frac{b}{1+4a^2}\ge b-ab\)
=> P \(\ge a+b-2ab=4ab-2ab=2ab\)
Mặt khác ta có: \(a+b\ge2\sqrt{ab}\)(cosi)
=> \(4ab\ge2\sqrt{ab}\) <=> \(2ab\ge\sqrt{ab}\)<=> \(4a^2b^2-ab\ge0\) <=> \(ab\left(4ab-1\right)\ge0\)
<=> \(\orbr{\begin{cases}ab\le0\left(loại\right)\\ab\ge\frac{1}{4}\end{cases}}\)(vì a,b là số thực dương)
=> P \(\ge2\cdot\frac{1}{4}=\frac{1}{2}\)
Dấu "=" xảy ra <=> a = b = 1/2
Vậy MinP = 1/2 <=> a = b= 1/2
Ta có: \(a+b=4ab\le\left(a+b\right)^2\Leftrightarrow\left(a+b\right)\left[\left(a+b\right)-1\right]\ge0\)
Mà \(a+b>0\Rightarrow a+b\ge1\)
Áp dụng BĐT Cô-si, ta có: \(P=\frac{a}{1+4b^2}+\frac{b}{1+4a^2}=\left(a-\frac{4ab^2}{1+4b^2}\right)+\left(b-\frac{4a^2b}{1+4a^2}\right)\)\(\ge\left(a-\frac{4ab^2}{4b}\right)+\left(b-\frac{4a^2b}{4a}\right)=\left(a+b\right)-2ab=\left(a+b\right)-\frac{a+b}{2}=\frac{a+b}{2}\ge\frac{1}{2}\)
Đẳng thức xảy ra khi a = b = 1/2
Từ \(a+b=4ab\Leftrightarrow\frac{1}{a}+\frac{1}{b}=4\)
\(\left(\frac{1}{a};\frac{1}{b}\right)\rightarrow\left(x;y\right)\)\(\Rightarrow\hept{\begin{cases}x+y=4\\\frac{x^2}{4y+x^2y}+\frac{y^2}{4x+xy^2}\ge\frac{1}{2}\end{cases}}\)
C-S: \(VT\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)+xy\left(x+y\right)}\)\(\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)+\left(x+y\right)\cdot\frac{\left(x+y\right)^2}{4}}=\frac{1}{2}\)
Bài 1: Theo đề : \(2ab+6bc+2ac=7abc\) \(;a,b,c>0\)
Chia cả 2 vế cho \(abc>0\Rightarrow\frac{2}{c}+\frac{6}{a}+\frac{2}{b}=7\)
Đặt: \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow\hept{\begin{cases}x,y,z>0\\2z+6x+2y=7\end{cases}}\)
Khi đó: \(M=\frac{4ab}{a+2b}+\frac{9ac}{a+4c}+\frac{4bc}{b+c}=\frac{4}{2x+y}+\frac{9}{4x+z}+\frac{4}{y+z}\)
\(\Rightarrow M=\frac{4}{2x+y}+2x+y+\frac{9}{4x+z}+4x+z+\frac{4}{y+z}+y+z-\left(2x+y+4x+z+y+z\right)\)
\(=\left(\frac{2}{\sqrt{x+2y}}-\sqrt{x+2y}\right)^2+\left(\frac{3}{\sqrt{4x+z}}-\sqrt{4x+z}\right)^2+\left(\frac{2}{\sqrt{y+z}}-\sqrt{y+z}\right)^2+17\ge17\)
Khi: \(\hept{\begin{cases}x=\frac{1}{2}\\y=z=1\end{cases}}\Rightarrow M=17\)
\(Min_M=17\Leftrightarrow a=2;b=1;c=1\)
ミ★๖ۣۜBăηɠ ๖ۣۜBăηɠ ★彡 chém bài khó nhất rồi nên em xin mạn phép chém bài dễ ạ.
2/\(VT=\Sigma_{cyc}\frac{\left(x+y+z\right)^2-x^2}{x\left(x+y+z\right)+yz}=\Sigma_{cyc}\frac{\left(y+z\right)\left(2x+y+z\right)}{\left(x+y\right)\left(x+z\right)}\)
\(\ge\Sigma_{cyc}\frac{\left(y+z\right)\left(2x+y+z\right)}{\frac{\left(2x+y+z\right)^2}{4}}=\Sigma_{cyc}\frac{4\left(y+z\right)}{2x+y+z}=\Sigma_{cyc}\frac{2\left(y+z-2x\right)}{2x+y+z}+6\)
\(=\Sigma_{cyc}\left(\frac{2\left(x+y+z\right)\left(y+z-2x\right)}{2x+y+z}-\frac{3}{2}\left(y+z-2x\right)\right)+6\)
\(=\Sigma_{cyc}\frac{\left(y+z-2x\right)^2}{2\left(2x+y+z\right)}+6\ge6\)
Áp dụng bất đẳng thức Bunyakovsky dạng phân thức và bất đẳng thức Cauchy, ta được:\(P=\frac{1}{a^2+b^2}+\frac{1}{ab}+4ab=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(\frac{1}{4ab}+4ab\right)+\frac{1}{4ab}\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{4ab.\frac{1}{4ab}}+\frac{1}{\left(a+b\right)^2}=4+2+1=7\)Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)