Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho AB và CD là hai đoạn thẳng song song và bằng nhau, A'B' và C'D' là các hình chiếu của chúng trên cùng một đường thẳng. Chứng minh rằng A'B' = C'D'
GIÚP MK VS NHA. CẢM ƠN MỌI NGƯỜI NHIỀU Ạ
@soyeon_Tiểubàng giải
1 câu trả lời
Toán lớp 7 Ôn tập toán 7
Từ A hạ đường vuông góc với BB' tại H
Từ C hạ đường vuông góc với DD' tại K
Gọi I là giao điểm của CD và BB'
Dễ thấy BB' // DD' do cùng _|_ A'D'
=> BID = IDK (so le trong)
Lại có: ABI = BID (so le trong)
=> IDK = ABI
Xét t/g ABH vuông tại H và t/g CDK vuông tại K có:
AB = CD (gt)
ABH = CDK (cmt)
Do đó, t/g ABH = t/g CDK ( cạnh huyền - góc nhọn)
=> AH = CK (2 cạnh tương ứng) (1)
Có: AH // A'B' ( cùng _|_ BB')
AA' // B'H ( cùng _|_ A'D')
=> AH = A'B' ( tính chất đoạn chắn) (2)
Tương tự ta cũng có: CK = C'D' (3)
Từ (1); (2) và (3) => A'B' = C'D' (đpcm)
Bài này có trong câu hỏi tương tự bạn nên tìm nhé :)))
Mình dán lên đây cho bạn xem cho tiện
a: Xét tứ giác ABCD có
AD//BC
AD=BC
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
Gọi H là giao điểm của AB và CD
Nối AC, AD,BC,BD
Xét ΔACD và ΔBCD, ta có:
AC = BC
(bán kính hai cung tròn bằng nhau)
AD = BD
CD cạnh chung
Suy ra: ΔACD = ΔBCD(c.c.c)
Suy ra: ∠C1 = ∠C2 (hai góc tương ứng)
Xét hai tam giác AHC và BHC. Ta có:
AC = BC (bán kính hai cung tròn bằng nhau)
∠C1 = ∠C2 (chứng minh trên)
CH cạnh chung
Suy ra: ΔAHC = ΔBHC(c.g.c)
Suy ra: AH = BH (hai cạnh tương ứng) (1)
Ta có : ∠H1 = ∠H2 (hai góc tương ứng)
∠H1 + ∠H2 =180° (hai góc kề bù)
Suy ra: ∠H1 = ∠H2 = 90o ⇒ CD ⊥ AB (2)
Từ (1) và (2) suy ra CD là đường trung trực của AB