
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Câu 2, Do 0<x,y,z<=1 nên ta có:
\(\hept{\begin{cases}\left(x-1\right)\left(y-1\right)\ge0\\\left(y-1\right)\left(z-1\right)\ge0\\\left(z-1\right)\left(x-1\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}xy+1\ge x+y\\yz+1\ge y+z\\xz+1\ge x+z\end{cases}}}\)
Thay vào VT ta có:
\(VT\le\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)(1)
Do x,y,z <= 1 nên x+y+z <=3 nên \(\frac{3}{x+y+z}\ge\frac{3}{3}=1\)(2)
Từ (1),(2) -> dpcm
1/ Vai trò của a, b, c là bình đẳng, không mất tính tổng quát, giả sử \(2\ge a\ge b\ge c\ge0\)
Khi đó \(3=a+b+c\le3a\Rightarrow1\le a\le2\Rightarrow\left(a-1\right)\left(a-2\right)\le0\)
Ta có:
\(LHS=a^3+b^3+c^3\le a^3+b^3+c^3+3bc\left(b+c\right)\)
\(=a^3+\left(b+c\right)^3=a^3+\left(3-a\right)^3\)
\(=9a^2-27a+27=9\left(a-1\right)\left(a-2\right)+9\le9\)
Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị.
P/s: Is that true?

Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira,
Nguyễn Lê Phước Thịnh, Nguyễn Thị Ngọc Thơ, Nguyễn Thanh Hiền, Quân Tạ Minh, @tth_new
Help meeee! thanks nhiều ạ


từ gt \(\Rightarrow\)abc>0 => (2-a)(2-b)(2-c)>0 =>
8+2(ab+bc+ca)−4(a+b+c)−abc≥0 => 2(ab+bc+ca) \(\ge\)4 + abc \(\ge\)4
=> (a+b+c)^2≥4+a2+b2+c2 => a^2+b^2+c^2 \(\le\) 5

1.
\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le}2+a\)
Tương tự \(b^2\le2+b,c^2\le2+c\Rightarrow a^2+b^2+c^2\le6+a+b+c=6\)
Dấu "=" xảy ra khi a=2,b=c=-1 và các hoán vị của chúng
Xét \(\frac{a^2+1}{a}=a+\frac{1}{a}\)
Dễ thấy dấu "=" xảy ra khi \(a=\frac{1}{3}\)
khi đó \(a+\frac{1}{a}=a+\frac{1}{9a}+\frac{8}{9a}\ge2\sqrt{\frac{a.1}{9a}}+\frac{8}{\frac{9.1}{3}}=\frac{10}{3}\)
\(\Rightarrow\frac{a}{a^2+1}\le\frac{3}{10}\)
tương tự =>đpcm

a³ + b³ + c³ - 3abc = (a+b+c)(a²+b²+c² -ab-bc-ca) ; thay giả thiết a+b+c = 3 ta có:
a³+b³+c³ = 3(a²+b²+c² -ab-bc-ca + abc) (1)
* từ giả thiết 0 ≤ a, b, c ≤ 2 => (2-a)(2-b)(2-c) ≥ 0
⇔ 8 -4a-4b-4c + 2ab+2bc+2ca -abc ≥ 0 (lại thay a+b+c = 3)
⇒ abc ≤ 2ab+2bc+2ca - 4 (2)
Dấu '=' khi có 1 số = 2
thay (1) vào (2) ta có:
a³+b³+c³ ≤ 3(a²+b²+c² +ab+bc+ca - 4) = 3[(a+b+c)² - ab-bc-ca -4] = 3(5-ab-bc-ca) (3)
Mặt khác cũng từ (2) ta có: 2(ab+bc+ca) ≥ abc+4 ≥ 4
⇒ -ab-bc-ca ≤ -2 (dấu "=" khi có 1 số = 0) thay vào (3) ta có
a³+b³+c³ ≤ 3(5-ab-bc-ca) ≤ 9 (đpcm)
Mới lớp 8 nên không hiểu biết rộng về lớp 9 sai bỏ qua