\(\dfrac{4a^2b^2}{\left(a^2+b^2\right)^2}+\dfrac{a^2}{b^2}+\dfrac{b^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

Lạy đề, đâu ra \(c^2\) ko biết :v

#Sửa đề:\(\dfrac{4a^2b^2}{\left(a^2+b^2\right)^2}+\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}\ge3\)

Chuẩn hóa \(a^2+b^2=2\) thì BĐT là:

\(a^2b^2+\dfrac{a^2}{2-a^2}+\dfrac{b^2}{2-b^2}\ge3\)

Lại có \(a^2+b^2\ge2ab\Rightarrow ab\le1\)

\(\Leftrightarrow\dfrac{a^2}{2-a^2}+\dfrac{b^2}{2-b^2}\ge3-\left(ab\right)^2\ge2\)

Lại có BĐT \(\dfrac{a^2}{2-a^2}\ge2a^2-1\)

Đúng vì tương đương \(\dfrac{2\left(a-1\right)^2\left(a+1\right)^2}{2-a^2}\ge0\)

Tương tự rồi cộng theo vế

\(VT\ge2\left(a^2+b^2\right)-1\cdot2=4-2=2\)

24 tháng 11 2018

\(\dfrac{4a^2-9b^2}{a^2b^2}\div\dfrac{2ax+3bx}{2ab}\)

\(=\dfrac{\left(2a-3b\right)\left(2a+3b\right)}{a^2b^2}\times\dfrac{2ab}{x\left(2a+3b\right)}\)

\(=\dfrac{2ab\left(2a-3b\right)\left(2a+3b\right)}{a^2b^2x\left(2a+3b\right)}=\dfrac{4a-6b}{xab}\)

2 x254b2:15+2b

\(=\dfrac{2x}{\left(5-2b\right)\left(5+2b\right)}\times\dfrac{5+2b}{1}\)

\(=\dfrac{2x\left(5+2b\right)}{\left(5-2b\right)\left(5+2b\right)}=\dfrac{2x}{5-2b}\)

(2a)22ab.b(2a)+12

\(=\dfrac{\left(2-a\right)^2b}{2ab\left(2-a\right)}+\dfrac{1}{2}\)

\(=\dfrac{2b-ab}{2ab}+\dfrac{1}{2}\)

\(=\dfrac{2b-ab}{2ab}+\dfrac{ab}{2ab}=\dfrac{2b}{2ab}=\dfrac{1}{a}\)

2 b+22bb2:b+1b+2b+23b6

\(=\dfrac{2\left(b+1\right)}{b\left(2-b\right)}\times\dfrac{b}{b+1}+\dfrac{2b+2}{3b-6}\)

\(=\dfrac{2b\left(b+1\right)}{\left(2-b\right)b\left(b+1\right)}+\dfrac{2b+2}{3b-6}\)

\(=\dfrac{2}{2-b}-\dfrac{2\left(b+1\right)}{3\left(2-b\right)}\)

\(=\dfrac{6}{3\left(2-b\right)}-\dfrac{2\left(b+1\right)}{3\left(2-b\right)}\)

\(=\dfrac{6-2\left(b+1\right)}{3\left(2-b\right)}\)

\(=\dfrac{4-2b}{3\left(2-b\right)}=\dfrac{2\left(2-b\right)}{3\left(2-b\right)}=\dfrac{2}{3}\)

a) \(\dfrac{\left(a-b\right)\left(c-d\right)}{\left(b^2-a^2\right)\left(d^2-c^2\right)}=\dfrac{\left(a-b\right)\left(c-d\right)}{\left(a-b\right)\left(a+b\right)\left(c-d\right)\left(c+d\right)}=\dfrac{1}{\left(a+b\right)\left(c+d\right)}\)

b) \(\dfrac{m^4-m}{2m^2+2m+2}=\dfrac{m\left(m^3-1\right)}{2\left(m^2+m+1\right)}=\dfrac{m\left(m-1\right)\left(m^2+m+1\right)}{2\left(m^2+m+1\right)}=\dfrac{m\left(m-1\right)}{2}\)

c) \(\dfrac{ab^2+a^3-a^2b}{a^3+b^3}=\dfrac{a\left(b^2+a^2-ab\right)}{\left(a+b\right)\left(a^2-ab+b^2\right)}=\dfrac{a}{a+b}\)

2 tháng 12 2018

bạn ơi giúp minh 1 câu này đc o :

\(\dfrac{xy+1-x-y}{y+z-1-yz}\)

Vs cả câu c ý mẫu là a\(^3\)b + b\(^4\) nha chứ o phải b\(^3\)

Câu 1:

Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)

\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)

\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)

Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)

\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)

Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)

23 tháng 3 2018

5 , a3+b3+c3\(\ge\) 3abc

\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0

\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)

ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)

(a-b)2+(b-c)2+(c-a)2\(\ge0\)

<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)

<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)

Từ (1)(2)(3)=> pt luôn đúng