K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2015

Vì a > 2 và b > 2 nên ta đặt a = 2 + m; b = 2 + n          ( m,n $$ N* )

 a + b = ( 2 + m ) + ( 2 + n ) = 4 + ( m + n )                                                     ( 1 )

 a . b = ( 2 + m ) . ( 2 + n ) = ( 2 + m ) . 2 + ( 2 + m ) . n = 4 + 2m + 2n + mn = 4 + 2 . ( m + n ) + m . n   ( 2 )

 Do  m,n \(\in\) N* nên 2 . ( m + n ) > m + n và m .n > 0

Từ ( 1 ) và ( 2 ) suy ra a + b < a . b

23 tháng 4 2017

a>2=>a.b>2.b

b>2->a.b>2.a

->ab+ab>2b+2a

->2ab>2(a+b)

->ab>a+b

10 tháng 6 2015

Xét hiệu A + B - A.B = - (A - 1)(B - 1) + 1

Mà A - 1 > 1; B - 1 >1 => (A - 1)(B - 1) >1 => - (A - 1)(B - 1) < -1

=> - (A - 1)(B - 1) + 1 <0

=> A + B - A.B <0

Hay A + B < A.B

15 tháng 9 2021

Vì: a>2 => a=2+m

b>2 => b=2+n (m, n thuộc N*)

=> a+b= (2+m) +(2+n)

a.b= (2+m). (2+n)

    = 2(2+n)+ m(2+n)
 

  = 4+ 2n+ 2m+ mn
 

  = 4+ m+ m+ n+ n+ mn
 

  = (4+ m+ n) +(m +n +mn)

    = (2+ m) +(2+ n) + (m+ n+ mn) > (2+ m)+ (2+n)

=> a.b > a+b

15 tháng 9 2021

Đáp án:Vì: a>2 => a=2+m
b>2 => b=2+n (m, n thuộc N*)
=> a+b= (2+m) +(2+n)
a.b= (2+m). (2+n)
    = 2(2+n)+ m(2+n)
    = 4+ 2n+ 2m+ mn
    = 4+ m+ m+ n+ n+ mn
    = (4+ m+ n) +(m +n +mn)

    = (2+ m) +(2+ n) + (m+ n+ mn) > (2+ m)+ (2+n)
=> a.b > a+b .dpcm

18 tháng 7 2016

Xét hiệu a+b-ab=-(a-1)(b-1)+1

Vì \(\hept{\begin{cases}a>2\\b>a\end{cases}\Rightarrow\hept{\begin{cases}a-1>1\\b-1>1\end{cases}}}\)

=>(a-1)(b-1)>1

=>-(a-1)(b-1)<-1

=>-(a-1)(b-1)+1<0

=>-(a-1)(b-1)<0

=>a+b-ab<0

=>a+b<ab (đpcm)

18 tháng 7 2016

ta có:\(b>a>2\)

\(=>b>2\)

\(=>a.b>2.b>a+b\)

12 tháng 2 2017

1. Do \(\frac{a}{b}< 1\Leftrightarrow\)a<b \(\Leftrightarrow\)a+n<b+n

Ta có: \(\frac{a}{b}\)= 1 - \(\frac{a-b}{b}\)

          \(\frac{a+n}{b+n}\)= 1- \(\frac{a-b}{b+n}\)

Do \(\frac{a-b}{b}\)>\(\frac{a-b}{b+n}\)=> \(\frac{a}{b}\)<\(\frac{a+n}{b+n}\)

2.Tương tự

21 tháng 3 2017

ko hiểu