K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2021

xem lại đề đi bạn :))

 

 

26 tháng 5 2020

tao loa

30 tháng 11 2019

Ta co:

\(\frac{1}{a+b^2}+\frac{1}{a^2+b}=\frac{1}{\frac{a^2}{a}+b^2}+\frac{1}{a^2+\frac{b^2}{b}}\ge\frac{1}{\frac{\left(a+b\right)^2}{a+1}}+\text{ }\frac{1}{\frac{\left(a+b\right)^2}{b+1}}=\frac{a+b+2}{\left(a+b\right)^2}\)

Ta di chung minh:

\(\frac{a+b+2}{\left(a+b\right)^2}\le1\)

Dat \(t=a+b\left(t\ge2\right)\)

BDT can chung minh la:

\(\frac{t+2}{t^2}\le1\)

\(\Leftrightarrow\left(t-2\right)\left(t+1\right)\ge0\left(True\right)\)

Dau '=' xay ra khi \(a=b=1\)

30 tháng 11 2019

Ta có:\(\frac{1}{a+b^2}\le\frac{1}{2b\sqrt{a}}\)( áp dụng bất đẳng thức coossi cho a và b^2 rồi nghịch đảo)

\(\frac{1}{b^2+a}\le\frac{1}{2b\sqrt{a}}\)

Do đó: \(\frac{1}{a+b^2}+\frac{1}{b+a^2}\le\frac{1}{2b\sqrt{a}}+\frac{1}{2a\sqrt{b}}\)

\(=\frac{\sqrt{a}+\sqrt{b}}{2ab}=\frac{\sqrt{a}.1+\sqrt{b}.1}{2ab}\)

\(\le\frac{\frac{a+1}{2}+\frac{b+1}{2}}{2ab}=\frac{a+b+2}{4ab}\)( áp dụng bất đẳng thức cosi cho \(\sqrt{a}.1\)và \(\sqrt{b}.1\))

\(\le\frac{a+b+2}{\left(a+b\right)^2}=\frac{a+b}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)

\(=\frac{1}{a+b}+\frac{2}{\left(a+b\right)^2}\)

\(\le\frac{1}{2}+\frac{2}{4}=1\)( do a+b\(\ge\)2 nên \(\frac{1}{a+b}\le\frac{1}{2}\)và \(\left(a+b\right)^2\ge4\)nên  \(\frac{2}{\left(a+b\right)^2}\le\frac{2}{4}\))

Dấu bằng xảy ra khi và chỉ khi a=b=1

20 tháng 4 2017

Hehe

1) Áp dụng hằng bất đẳng thức số 1: (a-b)^2>=0 với mọi a,b

=> a^2- 2ab+ b^2>= 0 với mọi a,b

=> a^2+2ab+ b^2>= 4ab với a,b>0

=> (a+b)^2> 4ab với a,b>0

=> a+b>= \(2\sqrt{ab}\)

Dấu = xảy ra <=> a-b=0 <=> a= b

Cái này là bất đẳng thức cô- si. lớp 8 được học rồi mà :D

2) Chắc thiếu đề :D

NV
30 tháng 6 2021

\(c\ge\sqrt{ab}\Leftrightarrow\dfrac{c}{a}.\dfrac{c}{b}\ge1\)

BĐT cần chứng minh tương đương:

\(\dfrac{\left(c+a\right)^2}{c^2+a^2}\ge\dfrac{\left(c+b\right)^2}{c^2+b^2}\Leftrightarrow\dfrac{\left(\dfrac{c}{a}+1\right)^2}{\left(\dfrac{c}{a}\right)^2+1}\ge\dfrac{\left(\dfrac{c}{b}+1\right)^2}{\left(\dfrac{c}{b}\right)^2+1}\)

Đặt \(\left(\dfrac{c}{a};\dfrac{c}{b}\right)=\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}xy\ge1\\y>x\Rightarrow y-x>0\end{matrix}\right.\) (1)

BĐT cần c/m trở thành: \(\dfrac{\left(x+1\right)^2}{x^2+1}\ge\dfrac{\left(y+1\right)^2}{y^2+1}\Leftrightarrow\dfrac{x}{x^2+1}\ge\dfrac{y}{y^2+1}\)

\(\Leftrightarrow xy^2+x\ge x^2y+y\Leftrightarrow xy\left(y-x\right)-\left(y-x\right)\ge0\)

\(\Leftrightarrow\left(xy-1\right)\left(y-x\right)\ge0\)  luôn đúng theo (1)

Vậy BĐT đã cho được c/m 

Dấu "=" xảy ra khi \(xy=1\) hay \(c=\sqrt{ab}\)

12 tháng 12 2019

min(!;1;1)

max (0;0;3)

Do vai trò của a, b, c là bình đẳng nên ta có thể giả sử \(a\ge b\ge c\)

*Tìm Min: 

Cách 1:

Theo nguyên lí Dirichlet trong 3 số a -1; b-1; c-1 tồn tại ít nhất 2 số mà tích chúng không âm. Giả sử\(\left(a-1\right)\left(b-1\right)\ge0\Rightarrow abc\ge ca+bc-c\)

Từ đó \(P\ge a^2+b^2+c^2+ca+bc-c=a^2+b^2+c\left(a+b+c-1\right)\)

\(=\left(a^2+1\right)+\left(b^2+1\right)+2c-2\ge2\left(a+b+c\right)-2=4\)

Đẳng thức xảy ra khi \(a=b=c=1\)

*Tìm max:

\(P\le a^2+b^2+c^2+6abc\)

Ta sẽ chứng minh: \(a^2+b^2+c^2+6abc\le9=\left(a+b+c\right)^2\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2\right)+18abc\le\left(a+b+c\right)^3\)

\(VP-VP=2\left[a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\right]\ge0\)

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và các hoán vị.

12 tháng 12 2019

Bỏ 2 dòng đầu đi nha, nháp thôi á!

13 tháng 8 2020

Bạn tốt qá he

13 tháng 8 2020

\(x,y \geq 0\)