K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2020

Áp dụng BĐT Cosi

\(A=\frac{a^2}{a+1}+\frac{b^2}{b+1}\ge2\sqrt{\frac{a^2}{a+1}+\frac{b^2}{b+1}}\)

\(\Leftrightarrow A\ge\frac{2ab}{\sqrt{\left(a+1\right)\left(b+1\right)}}\)

Đến đây bạn tự xử lí phần dấu "="

10 tháng 4 2020

Nhật Quỳnh Cô si lỗi rồi kìa -_-

\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}\)\(\ge\frac{\left(a+b\right)^2}{a+b+2}=\frac{4}{4}=1\)

Dấu "=" xảy ra tại a=b=1

Vậy..........................

19 tháng 6 2021

\(3a+3b+\dfrac{1}{a+b}=\dfrac{a+b}{25}+\dfrac{1}{a+b}+\dfrac{74\left(a+b\right)}{25}\ge2.\sqrt{\dfrac{a+b}{25}.\dfrac{1}{a+b}}+\dfrac{74}{25}.5=\dfrac{76}{5}\)

Dấu "=" xảy ra khi \(a=b=\dfrac{5}{2}\)

Vậy GTNN của biểu thức là \(\dfrac{76}{5}\)

19 tháng 6 2021

Ta có: 3a + 3b + \(\dfrac{1}{a+b}\) = \(\dfrac{1}{a+b}+\dfrac{a+b}{25}+\dfrac{74}{25}\left(a+b\right)\)

Áp dụng BDT Co-si, ta có:

\(\dfrac{1}{a+b}+\dfrac{a+b}{25}\ge2\sqrt{\dfrac{1}{a+b}.\dfrac{a+b}{25}}\)

=> \(\dfrac{1}{a+b}+\dfrac{a+b}{25}\ge\dfrac{2}{5}\)

Mà \(\dfrac{74}{25}\left(a+b\right)\ge\dfrac{74}{5}\)

=> \(3\left(a+b\right)+\dfrac{1}{a+b}\ge\dfrac{76}{5}\)

Dấu "=" xảy ra <=> \(a=b=\dfrac{5}{2}\)

18 tháng 1 2022

Em gõ Latex nha mn nhìn ko ra nha em

18 tháng 1 2022

a+b≤1. tìm gtnn của :1/(a^2+b^2)+(2012ab+1)/ab+4ab

NV
10 tháng 9 2021

\(a\ge2b\Rightarrow\dfrac{a}{b}\ge2\)

\(A=\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{a}{4b}+\dfrac{b}{a}+\dfrac{3}{4}.\dfrac{a}{b}\ge2\sqrt{\dfrac{ab}{4ab}}+\dfrac{3}{4}.2=\dfrac{5}{2}\)

\(A_{min}=\dfrac{5}{2}\) khi \(a=2b\)

15 tháng 9 2020

\(A=\frac{1}{a}\)\(+\frac{1}{a}\)\(+\frac{1}{a}\)\(+\frac{1}{a}\)\(+\frac{1}{ab}\)\(\ge\frac{25}{4a+ab}\)\(=\frac{25}{a\left(b+4\right)}\)\(\ge\frac{25}{\frac{1}{4}\left(a+b+4\right)^2}\)\(=1\)

\(A_{min=1}\)\(khi\){ a = 5 

                            b = 1

15 tháng 9 2020

Lần đầu tiên làm toán lớp 8 , có gì sai sót mong bạn chỉ ra hộ mình

\(Q=\frac{1}{a^2+b^2}+2012+\frac{1}{ab}+4ab.\)

Ta có \(M=\frac{1}{a^2+b^2}+\frac{1}{ab}+4ab=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}+8ab-4ab\)

Áp dụng bđt Cauchy ta có

\(M\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{\frac{1}{2ab}.8ab}-\left(a+b\right)^2=7\)

=> \(Q\ge2012+7=2019\)

Dấu "=" xảy ra khi a=b=\(\frac{1}{2}\)

Vậy......

20 tháng 4 2019

\(Q=\frac{1}{a^2+b^2}+\frac{2012ab+1}{ab}+4ab=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(4ab+\frac{1}{4ab}\right)+\frac{1}{4ab}+2012\)

Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y};\left(x+y\right)^2\ge4xy\),ta có:

\(\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge\frac{4}{1}=4\)

\(\left(4ab+\frac{1}{4ab}\right)^2\ge4.4ab\cdot\frac{1}{4ab}=4\Rightarrow4ab+\frac{1}{4ab}\ge2\)

\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\ge\frac{4}{1}=4\Rightarrow\frac{1}{4ab}\ge1\)

\(\Rightarrow Q\ge4+2+1+2012=2019\)

Dấu "=" xảy ra khi a=b=1/2