\(a^3+b^3=a^5+b^5\). Cmr \(a^2+b^2\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

\(a^3+b^3=a^5+b^5\)

\(\Rightarrow\left(a^2.a^1\right)+\left(b^2.b^1\right)=\left(a^2.a^3\right)+\left(b^2.b^3\right)\)

\(\Rightarrow\dfrac{a^2}{a^2}=\dfrac{a^3+\left(b^2+b^3\right)}{a^1+b^2.b^1}\)

\(\Rightarrow1=a^2+b^2\)

\(\Rightarrow1\ge\left(a^2+b^2\right)-ab\)

\(\Rightarrow1+ab\le a^2+b^2\)

10 tháng 6 2019

#)Giải :

\(a^2+b^2\le1+ab\)

\(\Leftrightarrow a^2-ab+b^2\le1\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)

\(\Leftrightarrow a^3+b^3\le a+b\)

\(\Leftrightarrow\left(a^3+b^3\right)\left(a^3+b^3\right)\le\left(a+b\right)\left(a^5+b^5\right)\left(a^3+b^3=a^5+b^5\right)\)

\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+ab^5+a^5b+b^6\)

\(\Leftrightarrow a^5b+ab^5\ge2a^3b^3\)

\(\Leftrightarrow a^5b+ab^5-2a^3b^3\ge0\)

\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow ab\left(a^2-b^2\right)^2\ge0\)( luôn đúng \(\forall a;b>0\))

Vậy \(a^2+b^2\le1+ab\left(đpcm\right)\)

P/s : Bài này mk tham khảo trên mạng ( tại thấy rảnh nên chép hộ ^^ )

3

Ta có: \(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+2a\left(b+c\right)+\left(b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow\text{Đ}PCM\)

2b)

Ta có: \(x^2+y^2-4x-2y+5=0\Leftrightarrow x^2+y^2-4x-2y+4+1=0\Leftrightarrow\left(x-2\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)

c) \(x^4-11x^2+4x-21=0\Leftrightarrow x^4-10x^2+25-x^2+4x-4=0\)

\(\Leftrightarrow\left(x^2-5\right)^2-\left(x-2\right)^2=0\Leftrightarrow\left(x^2-x-5+2\right)\left(x^2+x-5-2\right)=0\)

đến đây tự làm

19 tháng 12 2017

Sửa lại đề nha: abc = 1

\(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\le1\)

\(\Leftrightarrow\left(a+b+1\right)\left(b+c+1\right)+\left(b+c+1\right)\left(c+a+1\right)\)\(+\left(c+a+1\right)\left(a+b+1\right)\)

    \(\le\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)+a+b+b+c+1\)\(+\left(b+c\right)\left(c+a\right)+b+c+c+a+1\)
      \(+\left(c+a\right)\left(a+b\right)+c+a+a+b+1\)

\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)+\left(a+b\right)\left(b+c\right)+\left(b+c\right)\left(c+a\right)\)  \(+\left(c+a\right)\left(a+b\right)+a+b+b+c+c+a+1\)

\(\Leftrightarrow2+2\left(a+b+c\right)\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

 \(\Leftrightarrow2+2\left(a+b+c\right)\le\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\Leftrightarrow3\le\left(a+b+c\right)\left(ab+bc+ca-2\right)\)
Áp dụng bất đẳng thức Cauchy cho 3 số không âm:\(\left(a+b+c\right)\left(ab+bc+ca-2\right)\ge3.\sqrt[3]{a.b.c}.\left[3.\sqrt[3]{ab.bc.ca}-2\right]=3\)

\(\Rightarrow\)đpcm
Dấu đẳng thức xảy ra \(\Leftrightarrow a=b=c=1\)

31 tháng 3 2019

mk nhầm

a,b là các số dương thôi nhé

31 tháng 3 2019

Vì a,b>0 nên:\(ab>0;\left(a^2-b^2\right)^2\ge0\)

\(\Leftrightarrow ab\left(a^2-b^2\right)^2\ge0\)

\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow a^5b-2a^3b^3+ab^5\ge0\)

\(\Leftrightarrow a^6+ab^5+a^5b+b^6-a^6-2a^3b^3-b^6\ge0\)

\(\Leftrightarrow a\left(a^5+b^5\right)+b\left(a^5+b^5\right)-\left(a^3+b^3\right)^2\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^5+b^5\right)\ge\left(a^3+b^3\right)^2\)

\(\Leftrightarrow a+b\ge a^3+b^3\)(Vì a^5+b^5=a^3+b^3 và a^3+b^3;a^5+b^5>0)

\(\Leftrightarrow a+b\ge\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\Leftrightarrow a^2-ab+b^2\ge1\)

Vậy GTLN M=1 tại \(a^2-b^2=0\Leftrightarrow a=b\)

                              \(\Leftrightarrow a^3+a^3=a^5+a^5\)(Vì a=b)

                             \(\Leftrightarrow\orbr{\begin{cases}a=0\\a=1\end{cases}}\)(TH a=0 loại vì a>0)

                              \(\Leftrightarrow b=1\)

31 tháng 5 2020

Từ giả thiết ta có: \(ab+bc+ca=abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Xét vế trái: \(\frac{a^4+b^4}{ab\left(a^3+b^3\right)}+\frac{b^4+c^4}{bc\left(b^3+c^3\right)}+\frac{c^4+a^4}{ca\left(c^3+a^3\right)}\)\(=\frac{\frac{a^4+b^4}{a^4b^4}}{\frac{ab\left(a^3+b^3\right)}{a^4b^4}}+\frac{\frac{b^4+c^4}{b^4c^4}}{\frac{bc\left(b^3+c^3\right)}{b^4c^4}}+\frac{\frac{c^4+a^4}{c^4a^4}}{\frac{ca\left(c^3+a^3\right)}{c^4a^4}}\)

\(=\frac{\frac{1}{a^4}+\frac{1}{b^4}}{\frac{1}{a^3}+\frac{1}{b^3}}+\frac{\frac{1}{b^4}+\frac{1}{c^4}}{\frac{1}{b^3}+\frac{1}{c^3}}+\frac{\frac{1}{c^4}+\frac{1}{a^4}}{\frac{1}{c^3}+\frac{1}{a^3}}\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\Rightarrow\hept{\begin{cases}x,y,z>0\\x+y+z=1\end{cases}}\)

và ta cần chứng minh \(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge1\)

Ta xét BĐT phụ sau: \(\frac{p^4+q^4}{p^3+q^3}\ge\frac{p+q}{2}\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(p-q\right)^2\left(p^2+pq+q^2\right)\ge0\)(đúng với mọi số thực p,q)

Áp dụng ta có: \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)(1); \(\frac{y^4+z^4}{y^3+z^3}\ge\frac{y+z}{2}\)(2); \(\frac{z^4+x^4}{z^3+x^3}\ge\frac{z+x}{2}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được:

\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge\frac{2\left(x+y+z\right)}{2}=1\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi x = y = z = \(\frac{1}{3}\)hay a = b = c = 3

19 tháng 12 2017

nham nha mn, phai  laf 2(a^4+b^4)>=(a+b)(a^3+b^3)

20 tháng 1 2019

Theo đề ra ta có :

 \(ab+bc+ca-\frac{\left(a+b+c\right)^2}{3}=-\left[\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{6}\right]\le0\)

và : \(ab+bc+ca\le3\)

Suy ra : \(\frac{ab}{\sqrt{c^2+3}}\le\frac{ab}{\sqrt{c^2+ab+bc+ca}}=\frac{ab}{\sqrt{\left(c+a\right)\left(b+c\right)}}\)

Áp dụng bất đẳng thức AM - GM ta được :

\(\frac{ab}{\sqrt{c^2+3}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{b+c}\right)\)

Thiết lập 2 đẳng thức tương tự, cộng về theo về, ta có :

\(\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}\le\frac{1}{2}\left[\left(\frac{ab}{c+a}+\frac{bc}{c+a}\right)+\left(\frac{bc}{a+b}+\frac{ca}{a+b}\right)+\left(\frac{ca}{b+c}+\frac{ab}{b+c}\right)\right]\)

và : \(\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}\le\frac{a+b+c}{2}\)

Mà : \(a+b+c=3\)( theo đề bài ) , suy ra đpcm

20 tháng 1 2019

ở dòng thứ 3 qua dòng thứ 4 bạn sai nhé. đáng lẽ là \(\ge\)

2 tháng 5 2019

\(a+b+c=0\Rightarrow\hept{\begin{cases}a=-b-c\\b=-a-c\\c=-a-b\end{cases}}\)

\(ab+bc+ac=\left(-b-c\right).b+\left(-a-c\right).c+\left(-a-b\right).a\)

\(=-\left(a^2+b^2+c^2\right)-\left(ab+bc+ac\right)\)

\(\Rightarrow2.\left(ab+bc+ac\right)=-\left(a^2+b^2+c^2\right)\le0\)

\(\Rightarrow ab+bc+ac\le0\)(đpcm)

11 tháng 5 2019

Boul đẹp trai_tán gái đổ 100%:mik có cách khác nè:3

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

Do \(a^2+b^2+c^2\ge0\Rightarrow2\left(ab+bc+ca\right)\le0\Rightarrowđpcm\)