K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

c) Vì  F C H = F D H = 90 o  nên tứ giác CHDF nội tiếp đường tròn tâm I đường kính FH

=> IC = ID. Mà OC = OD nên ∆ OCI = ∆ ODI (c.c.c) => COI = DOI

=> OI là phân giác của góc COD

d) Vì OC = CD = OD = R nên ∆ OCD đều => COD = 60o

Có  C A D = 1 2 C O D = 30 o = > C F D = 90 o − C A D = 60 o  

Xét góc nội tiếp và góc ở tâm cùng chắn cung CD của (I), có

CID = 2CFD = 120o => OIC = OID =  C I D 2 = 60 o

Xét góc nội tiếp và góc ở tâm cùng chắn cung CD của (I), có

CID = 2CFD = 120o => OIC = OID  = C I D 2 = 60 o

Mặt khác COI = DOI =  C O D 2 = 30 o = > O I D + D O I = 90 o = > Δ O I D  vuông tại D

Suy ra O I = O D sin 60 o = 2 R 3  

Vậy I luôn thuộc đường tròn  O ; 2 R 3  

25 tháng 2 2017

B O A C D K H E

a, Xét tứ giác AKCH có: \(\widehat{AKC}+\widehat{AHC}=90+90=180\)=> tứ gác AKCH nội tiếp

b,Tứ giác AKCH nội tiếp => \(\widehat{HCK}=\widehat{HAD}\)(góc trong và góc ngoài đỉnh đối diện)

Mặt khác: \(\widehat{HAD}=\widehat{BCD}=\frac{1}{2}sđ\widebat{BD}\)

=> \(\widehat{BCD}=\widehat{ACD}\)=> CD là phân giác \(\widehat{KCB}\)

c,  Tứ giác AKCH nội tiếp: => \(\widehat{CKE}=\widehat{CAH}\)

Mà: \(\widehat{CDB}=\widehat{CAH}=\frac{1}{2}sđ\widebat{BC}\)

=> \(\widehat{CKE}=\widehat{CDE}\)=> tứ giác CKDE nội tiếp

=> \(\widehat{CKD}+\widehat{CED}=180\Rightarrow\widehat{CED}=180-\widehat{CKD}=180-90=90\)

=> \(CE⊥BD\)(ĐPCM)

d, em xem lại xem có gõ sai đề không nhé

16 tháng 8 2018

Câu d) Khi C di chuyển trên cung nhỏ̉ AB. Xác định vị trí C để CK.AD+CE.DB có giá trị lớn nhất. 

Nhờ mọi người giải dùm e với.

a:

góc ABA'=góc ACA'=1/2*180=90 độ

Xét ΔBOA' có

BH vừa là đường cao, vừa là trung tuyến

=>ΔBOA' cân tại B

mà OB=OA'

nên ΔBOA' đều

=>góc A'BH=30 độ

=>góc ABC=60 độ

Xét ΔACB có

AH vừa là đường cao, vừa là trung tuyến

góc ABC=60 độ

=>ΔACb đều

b: ΔOBA' đều có BH là đường cao

nên BH=OA'*căn 3/2=R*căn 3/2

=>CH=R*căn 3/2

=>BC=R*căn 3

=>DC=căn DB^2-BC^2=R

DH=căn DC^2+CH^2=R*căn 7/2