Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a không chia hết cho 3 => a có dạng 3k+1 hoặc 3k+2 (k thuộc Z)
- Nếu \(a=3k+1\Rightarrow a^2=\left(3k+1\right)^2=9k^2+6k+1\) chia 3 dư 1
- Nếu \(a=3k+2\Rightarrow a^2=\left(3k+2\right)^2=9k^2+12k+1\) chia 3 dư 1
=> nếu a không chia hết cho thì a2 chia 3 dư 1 (1)
CM tương tự ta có nếu b không chia hết cho 3 thì b2 chia 3 dư 1 (2)
Từ (1) và (2) => \(a^2-b^2⋮3\) (3)
Lại có: \(a^6-b^6=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)=\left(a^2-b^2\right)\left(a^4-2a^2b^2+b^4+3a^2b^2\right)=\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]\)
Từ (3) => \(\left(a^2-b^2\right)^2⋮3\)
Mà \(3a^2b^2⋮3\)
\(\Rightarrow\left(a^2-b^2\right)^2+3a^2b^2⋮3\) (4)
Từ (3) và (4) => \(\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]⋮3.3=9\) hay \(a^6-b^6⋮9\) (đpcm)
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
a: a^3-a=a(a^2-1)
=a(a-1)(a+1)
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>a^3-a chia hết cho 6
a) \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)
Vì \(n;n+1;n-1\)là 3 số nguyên liên tiếp chia hết cho 6.
\(\Rightarrow a\left(a+1\right)\left(a-1\right)\)chia hết cho 6
Hay \(a^3-a\)chia hết cho 6 (với mọi \(a\in Z\))
b) \(ab.\left(a^2-b^2\right)\)
Nếu a hoặc b chia hết cho 6 \(\Rightarrow ab.\left(a^2-b^2\right)\)chia hết cho 6
Nếu a và b không chia hết cho 6 mà \(a^2\)chia 6 dư 1(2;3;4;5....) và \(b^2\)chia 6 dư 1(2;3;4;5...)
\(\Rightarrow a^2-b^2\)chia 6 dư 1 (2;3;4;5...) - 1 (2;3;4;5...) = 0
thì \(ab.\left(a^2-b^2\right)\)chia hết cho 6.
a: \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)
Vì a;a-1;a+1 là ba số nguyên liên tiếp
nên \(a\left(a-1\right)\left(a+1\right)⋮3!\)
hay \(a^3-a⋮6\)
b: \(ab\left(a^2-b^2\right)=a^3b-ab^3\)
\(=a^3b-ab+ab-ab^3\)
\(=b\left(a^3-a\right)+a\left(b-b^3\right)\)
Vì \(a^3-a⋮6\)
và \(b-b^3=-\left(b^3-b\right)⋮6\)
nên \(ab\left(a^2-b^2\right)⋮6\)