K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2022

a.Ta có: a>b

\(\Leftrightarrow7a>7b\)

\(\Leftrightarrow7a-7>7b-7\)

b.Ta có: a>b

\(\Leftrightarrow-a< -b\) ( đổi chiều BĐT )

\(\Leftrightarrow-a+8< -b+8\)

\(\Rightarrow a^7\left(a-b\right)+b^7\left(b-a\right)>=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^7-b^7\right)>=0\)

\(\Leftrightarrow\left(a-b\right)^2\cdot A>=0\), với A>=0

=>Điều này luôn đúng

2 tháng 4 2023

Là khẳng định A vì ta có thể lấy một số tự nhiên bất kỳ để đặt MSC cho cả a và b và ta lấy phân số nào lớn hơn trừ đi phân số bé hơn 

26 tháng 10 2019

Cần CM : \(a^{k+1}-a^k\ge a-1\)\(\left(k\inℕ\right)\) (1) 

\(\Leftrightarrow\)\(a^k\left(a-1\right)-\left(a-1\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-1\right)\left(a^k-1\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-1\right)^2\left(a^{k-1}-a^{k-2}+a^{k-3}-a^{k-4}+...+1\right)\ge0\) ( đúng ) 

=> (1) đúng 

Áp dụng vào bài toán,với k = 7 ta có \(\hept{\begin{cases}a^8-a^7\ge a-1\\b^8-b^7\ge a-1\end{cases}}\Rightarrow a^8+b^8-a^7-b^7\ge a+b-2=0\)

\(\Leftrightarrow\)\(a^8+b^8\ge a^7+b^7\)

Dấu "=" xảy ra khi \(a=b=1\)

26 tháng 10 2019

Thay b = 2 - a vào phân tích ta được:

VT - VP = 4 (a - 1)^2 (a^6 - 6 a^5 + 36 a^4 - 104 a^3 + 176 a^2 - 160 a + 64) 

HQ
Hà Quang Minh
Giáo viên
10 tháng 1

\(\begin{array}{l}a)M = {32^{2023}} - {32^{2021}}\\M = {32^{2021}}\left( {{{32}^2} - 1} \right)\\M = {32^{2021}}.1023\end{array}\)

Vì \(1023 \vdots 31\) nên \(M = \left( {{{32}^{2021}}.1023} \right) \vdots 31\)

Vậy M chia hết cho 31.

\(\begin{array}{l}b)N = {7^6} + {2.7^3} + {8^{2022}} + 1\\N = {\left( {{7^3}} \right)^2} + {2.7^3} + 1 + {8^{2022}}\\N = {\left( {{7^3} + 1} \right)^2} + {8^{2022}}\\N = {\left( {344} \right)^2} + {8^{2022}}\\N = {\left( {8.43} \right)^2} + {8^{2022}}\\N = {8^2}\left( {{{43}^2} + {8^{2020}}} \right)\end{array}\)

Vì \({8^2} \vdots 8\) suy ra \(N = {8^2}\left( {{{43}^2} + {8^{2020}}} \right) \vdots 8\)

Vậy N chia hết cho 8

12 tháng 12 2019

Chọn B

AH
Akai Haruma
Giáo viên
20 tháng 7 2017

Lời giải

Cách giải đơn giản nhất là khai triển

\(3(a^8+b^8+c^8)\geq (a^3+b^3+c^3)(a^5+b^5+c^5)\)

\(\Leftrightarrow 2(a^8+b^8+c^8)\geq a^5(b^3+c^3)+b^5(c^3+a^3)+c^5(a^3+b^3)\)

\(\Leftrightarrow (a^3-b^3)(a^5-b^5)+(b^3-c^3)(b^5-c^5)+(c^3-a^3)(c^5-a^5)\geq 0(\star)\)

Xét \((a^3-b^3)(a^5-b^5)=(a-b)^2(a^2+b^2)(a^4+a^3b+a^2b^2+ab^3+b^4)\geq 0\) với mọi \(a,b>0\)

và tương tự với các biểu thức còn lại.

Suy ra BĐT \((\star)\) luôn đúng.

Ta có đpcm

Đây chính là một dạng của BĐT Chebyshev:

Với dãy số thực \(a_1\leq a_2\leq ....\leq a_n\) . Nếu tồn tại dãy số thực\(b_1\leq b_2\leq .... \leq b_n\) thì \(n(a_1b_1+a_2b_2+....+a_nb_n)\geq (a_1+a_2+...+a_n)(b_1+b_2+...+b_n)\)

AH
Akai Haruma
Giáo viên
21 tháng 7 2017

Câu 2:

Tương tự câu 1 thôi.

Do \(a+b=2\) nên bài toán tương đương: \(2(a^8+b^8)\geq (a^7+b^7)(a+b)\)

\(\Leftrightarrow a^8+b^8\geq a^7b+ab^7\Leftrightarrow (a^7-b^7)(a-b)\geq 0\)

\(\Leftrightarrow (a-b)^2(a^6+a^5b+....+ab^5+b^6)\geq 0(\star)\)

Xét \(Q=a^6+a^5b+a^4b^2+a^3b^3+a^2b^4+ab^5+b^6\)

\(Q=(a+b)(a^5+b^5)+a^2b^2(a^2+b^2+ab)\)

Dựa vào điều kiện \(a+b=2\) và biến đổi, ta thu được \(Q=16(2-ab)^2-8ab(2-ab)-a^3b^3\)

Đặt \(ab=t\Rightarrow Q=-t^3+24t^2-80t+64\)

\(\Leftrightarrow Q=(1-t)(t-8)^2+7t^2\)

Với mọi \(a,b\in\mathbb{R}\) ta luôn có \(ab\leq \frac{(a+b)^2}{4}\Rightarrow t\leq 1\). Do đó \(Q\geq 0\)

Kéo theo BĐT \((\star)\) luôn đúng, bài toán luôn đúng. Do đó ta có đpcm.

13 tháng 5 2022

\(a>b\Rightarrow7a>7b\) (do \(7>0\))

\(\Rightarrow7a-4>7b-4\)

13 tháng 5 2022

ta có a>b 

=>7a>7b

=> 7a-4>7b-4 ( dpcm)

24 tháng 3 2018

a)Vì a<b=>2a<2b

=>2a+5<2b+5

b)Vì a<b=>-10a>-10b

=>2-10a>2-10b

c)Vì a<b=>7a<7b

=>7a-3<7b-3(1)

Vì -3<-1=>7b-3<7b-1(2)

Từ (1) và (2)=>đpcm

d)Vì a<b=>\(-\dfrac{a}{3}< -\dfrac{b}{3}\)

=>\(3-\dfrac{a}{3}>3-\dfrac{b}{3}\)(3)

Vì 3>1=>\(3-\dfrac{b}{3}>1-\dfrac{b}{3}\)(4)

Từ (3) và (4)=> đpcm

24 tháng 3 2018

a, Ta có: a < b \(\Rightarrow\) 2a < 2b \(\Rightarrow\) 2a + 5 < 2b + 5

b, Ta có: a < b \(\Rightarrow\) -10a > -10b (đổi dấu) \(\Rightarrow\) 2 + (-10a) > 2 + (-10b) \(\Leftrightarrow2-10a>2-10b\)

c, Ta có: a < b \(\Rightarrow\)7a < 7b

Lại có: -3 < -1

\(\Rightarrow\) 7a + (-3) < 7a + (-1) \(\Leftrightarrow\) 7a - 3 < 7b - 1

d, Ta có: a < b \(\Rightarrow-\dfrac{a}{3}>-\dfrac{b}{3}\)(đổi dấu)

Lại có: 3 > 1

\(\Rightarrow3+\left(-\dfrac{a}{3}\right)>1+\left(-\dfrac{b}{3}\right)\Leftrightarrow3-\dfrac{a}{3}>1-\dfrac{b}{3}\)