Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(a>b\)
\(\Rightarrow-3a< -3b\) (Nhân cả 2 vế của BĐT với -3)
\(\Rightarrow4-3a< 4-3b\) (cộng cả 2 vế của BĐT với 4)
=> đpcm.
Bài làm
Ta có: a > b
=> 3a > 3b
=> 3a + 4 > 3b + 4 (1)
Mà 4 > 3
=> 3b + 4 > 3b + 3 (2)
Từ (1) và (2) => 3a + 4 > 3b + 3 ( đpcm )
Sửa đề: Chứng minh 3a + 2 < 3b + 5
a ≤ b
⇒ 3a ≤ 3b
⇒ 3a + 2 ≤ 3b + 2 (1)
2 < 5
⇒ 3b + 2 < 3b + 5 (2)
Từ (1) và (2) ⇒ 3a + 2 < 3b + 5
2,
a, Nếu 2a + 4 \(\ge\) 2b + 4
thì 2a \(\ge\) 2b hay a \(\ge\) b
b, Nếu 3a - 5 \(\le\) 3b - 5
thì 3a \(\le\) 3b hay a \(\le\) b
3,
a, Nếu a \(\le\) b thì a - b \(\le\) 0 hay 2019(a - b) \(\le\) 0 hay 2019a \(\le\) 2019b hay 2019a + 2020 \(\le\) 2019b + 2020
b, Nếu a \(\le\) b thì -a \(\ge\) -b hay -42a \(\ge\) -42b hay -42a - 24 \(\ge\) -42b - 24
3,
a, Nếu a > b thì 3a > 3b hay 3a + 2 > 3b + 2
b, Nếu a > b thì -a < -b hay -4a < -4b hay -4a - 5 < -4b - 5
Chúc bn học tốt!!
Vì a < b
⇒ 3a < 3b (nhân hai vế với 3 > 0, BĐT không đổi chiều)
⇒ 3a + 1 < 3b + 1 (cộng hai vế với 1).
Vậy 3a + 1 < 3b + 1.
ta có: \(a< b\)
\(\Rightarrow-3a>-3b\)
\(\Rightarrow-3a+2023>-3b+2023\)
Ta có a<b
=>-3a>-3b
=>2-3a>2-3b(1)
mà 2-3b>1-3b(2)
Từ (1),(2)=>2-3a>1-3b