K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

Từ a < b => 3a < 3b ( vì 3 >0 ) => 3a + 1 < 3b + 1.

Từ a < b => -2a > -2b ( vì -2 <0 ) => -2a + 1 > -2b +1.

1 tháng 4 2018

Ta có : \(a>b\)

\(\Rightarrow-3a< -3b\) (Nhân cả 2 vế của BĐT với -3)

\(\Rightarrow4-3a< 4-3b\) (cộng cả 2 vế của BĐT với 4)

=> đpcm.

30 tháng 12 2017

Bài 1, t nghĩ VP căn phải kéo dài hết

Áp dụng bđt bu nhi a, ta có 

\(\left(\sqrt{ab}+\sqrt{cd}\right)^2\le\left(a+d\right)\left(b+c\right)\Rightarrow\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+d\right)\left(b+c\right)}\left(ĐPCM\right)\)

Bài 2, Áp dụng bài 1, ta có 

\(\left(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\right)\le\left(a^2+b^2\right)\left[3a\left(a+2b\right)+3b\left(b+2a\right)\right]\)

\(\le2\left(3a^2+6ab+3b^2+6ab\right)=2\left[3\left(a^2+b^2\right)+12ab\right]\le2\left(6+12ab\right)\)

Áp dụng bđt cô si, ta có 

\(a^2+b^2\ge2ab\Rightarrow2\ge2ab\Rightarrow12\ge12ab\)

=>(...)^2<=36 => ...<=6 (ĐPcM)

dấu = xảy ra <=> a=b=1

^_^

12 tháng 6 2019

3a+5>3b+2
Ta có:
a>b => 3a>3b
=> 3a+5>3b+5
Lại có: 5>2
=> 3b+5>3b+2
=> 3a+5>3b+5>3b+2
Hay 3a+5>3b+2

12 tháng 6 2019

a, vì a > b nên 3a > 3b => 3a + 2 > 3b + 2 (1)

Mà 3a + 2 < 3a + 5 (2)

Từ (1) và (2) suy vô ra : 3a + 5 > 3b+2 (đpcm)

b, vì a > b nên -4a < -4b => 2-4a < 2- 4b

mà 2-4b < 3-4b nên 2-4a < 3-4b

24 tháng 4 2020

a) Ta có: a < b

⇒ 2a < 2b

⇒ 2a - 3 < 2b - 3 (cộng vào cả hai vế với -3)

b) Ta có: a < b

⇒ 3a < 3b

⇒ 3a - 1 < 3b + 1 (cộng vào cả hai vế với 1)

24 tháng 4 2020
https://i.imgur.com/o6iy58o.jpg