\(cho (a+b-c)^3\) +\((b+c-a)^3\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2016

đặt b+c+d=x;c+d+a=y;d+a+b=z;a+b+c=t(a,b,c,d>0→x,y,z,t>0)

→a=\(\frac{x+y+z+t}{3}-x=\frac{x+y+z+t-3x}{3}\) tương tự ta có:b=\(\frac{x+y+z+t-3y}{3}\);c=\(\frac{x+y+z+t-3z}{3}\);d=\(\frac{x+y+z+t-3t}{3}\)

thay vào bt ta được:\(\frac{x+y+z+t-3x}{3x}+\frac{x+y+z+t-3y}{3y}+\frac{x+y+z+t-3z}{3z}+\frac{x+y+z+t-3t}{3t}\)

\(\frac{1}{3}\left(1+\frac{y}{x}+\frac{z}{x}+\frac{t}{x}+\frac{x}{y}+1+\frac{z}{y}+\frac{t}{y}+\frac{x}{z}+\frac{y}{z}+1+\frac{t}{z}+\frac{x}{t}+\frac{y}{t}+\frac{z}{t}+1\right)-4\)

áp dụng định lý cô shi cho 2 số dương:(x,y,z,t>0)

s>=\(\frac{1}{3}\left(2+2+2+2+2+2+4\right)-4\)

s>=16/3-4→s>=\(\frac{4}{3}\)

25 tháng 8 2016

\(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}>\frac{4}{3}\)

24 tháng 8 2019

1, ABC△ABC vuông có ˆA=900A^=900 , ˆB=600B^=600 và b = 10 thì độ dài a là :

A. a = 153153

B. a = 103103

C. a = 20332033

D. a = 203203

2, ABC△ABC vuông có ˆA=900,ˆC=600A^=900,C^=600 và b = thì độ dài b' là :

A. b' = 8

B. b' = 6

C. b' = 6363

D. b' = 33

24 tháng 8 2019

1,C

2,B

28 tháng 4 2020

Cm \(3\left(a^2b+b^2c+c^2a\right)\left(a^2c+b^2a+c^2b\right)\ge abc\left(a+b+c\right)^3\)

Do 2 vế BĐT đồng bậc nên ta chuẩn hóa \(a+b+c=3\)

BĐT <=> \(3\left[abc\left(a^3+b^3+c^3\right)+\left(a^3b^3+b^3c^3+a^3c^3\right)+a^2b^2c^2\left(a+b+c\right)\right]\ge27abc\)

<=>\(3\left[abc\left(a^3+b^3+c^3\right)+\left(a^3b^3+b^3c^3+a^3c^3+3a^2b^2c^2\right)\right]\ge27abc\)

Áp dụng BĐT Schur ta có:

\(a^3b^3+b^3c^3+a^3c^3+3a^2b^2c^2\ge ab^2c\left(ab+bc\right)+a^2bc\left(ab+ac\right)+abc^2\left(ac+bc\right)\)

Khi đó BĐT 

<=>\(3\left(a^3+b^3+c^3\right)+3a^2\left(b+c\right)+3b^2\left(a+c\right)+3c^2\left(a+b\right)\ge27\)

<=> \(3\left(a^3+b^3+c^3\right)+3a^2\left(3-a\right)+3b^2\left(3-b\right)+3c^2\left(3-c\right)\ge27\)

<=> \(a^2+b^2+c^2\ge3\) luôn đúng do \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2=3\)( ĐPCM)

Dấu bằng xảy ra khi a=b=c

26 tháng 5 2020

Bài 2 

Áp dụng \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

=> \(VT\ge\frac{|a+1-b|+|b+1-c|+|c+1-a|}{\sqrt{2}}\)

Áp dụng BĐT \(|x|+|y|+|z|\ge|x+y+z|\)

=> \(VT\ge\frac{|a+1-b+b+1-c+c+1-a|}{\sqrt{2}}=\frac{3}{\sqrt{2}}\)(ĐPCM)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}\)

Bài 1​: Với mọi số x, y. Chứng minh rằng: a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \) b) \(x^2+5y^2-4xy+2x-6y+3>0\) Bài 2: Với mọi số thực x, a. Chứng minh rằng: \(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\) Bài 3: Cho \(a, b, c, d \in R\) và \(b< c < d\). Chứng minh rằng: a) \((a+b+c+d)^2>8(ac+bc)\) b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\) Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\)....
Đọc tiếp

Bài 1​: Với mọi số x, y. Chứng minh rằng:

a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \)
b) \(x^2+5y^2-4xy+2x-6y+3>0\)

Bài 2: Với mọi số thực x, a. Chứng minh rằng:

\(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\)

Bài 3: Cho \(a, b, c, d \in R\)\(b< c < d\). Chứng minh rằng:

a) \((a+b+c+d)^2>8(ac+bc)\)
b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\)

Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\). CMR:

\((p^2-a^2-b^2)(q^2-c^2-d^2)\le(pq-ac-bd)^2\)

Bài 5: \((a_1b_1+a_2b_2)^2\le(a_1^2+a_2^2)(b_1^2+b_2^2)\) dấu bằng xảy ra khi nào?

Bài 6: Cho a>0. Chứng minh rằng:

\(\sqrt{a+\sqrt{a+....+\sqrt{a}}}<\dfrac{1+\sqrt{1+4a}}{2}\)

Bài 7: \(y=\dfrac{x+1}{x^2+x+1}\). Tìm cực trị của y.

Bài 8: Cho \(0\le x, \) \(y\le1 \)\(x+y=3xy\). CMR: \(\dfrac{3}{9}\le \dfrac{1}{4(x+y)}\le \dfrac{3}{8}\)

Bài 9: Cho \(0\le x, \)\(y\le1 \). CMR: \((2^x+2^y)(2^{-x}+2^{-y})\ge \dfrac{9}{2}\)

Bài 10: Ba số thực a, b, c thỏa: \(a^2+b^2+c^2=2\), \(ab+bc+ca=1\) CMR: \(a,b,c \in [\dfrac{3}{4},\dfrac{4}{3}]\)

1
4 tháng 6 2018

@Phùng Khánh Linh

@Aki Tsuki

@Nhã Doanh

@Akai Haruma

@Nguyễn Khang

4 tháng 7 2019

Bài 2 xét x=0 => A =0

xét x>0 thì \(A=\frac{1}{x-2+\frac{2}{\sqrt{x}}}\)

để A nguyên thì \(x-2+\frac{2}{\sqrt{x}}\inƯ\left(1\right)\)

=>cho \(x-2+\frac{2}{\sqrt{x}}\)bằng 1 và -1 rồi giải ra =>x=?

4 tháng 7 2019

1,Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)

=> \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)

\(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

\(b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\)

\(c+2=\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)

=> \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}+...\)

=> \(\frac{\sqrt{a}}{a+2}+...=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)

=> M=0

Vậy M=0 

19 tháng 7 2018

Ta có : \(\dfrac{a}{a+b+c}< \dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\left(1\right)\)

\(\dfrac{b}{a+b+c}< \dfrac{b}{b+c}< \dfrac{b+a}{a+b+c}\left(2\right)\)

\(\dfrac{a}{a+b+c}< \dfrac{c}{a+c}< \dfrac{c+b}{a+b+c}\left(3\right)\)

Cộng từng vế của ( 1 ; 2 ; 3 ) , ta có :

\(1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}< 2\)

14 tháng 10 2017

giúp mình với

10 tháng 1 2018

trời bài dễ thế mà ko làm dc

NV
5 tháng 3 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{1}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{ac+bc+c^2}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac+bc+c^2}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-b;c=1\\b=-c;a=1\\c=-a;b=1\end{matrix}\right.\)

Thay trường hợp nào vào ta cũng được kết quả như bài toán

5 tháng 3 2020

thanks