\(\dfrac{a} {a+b} \)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

Ta có : \(\dfrac{a}{a+b+c}< \dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\left(1\right)\)

\(\dfrac{b}{a+b+c}< \dfrac{b}{b+c}< \dfrac{b+a}{a+b+c}\left(2\right)\)

\(\dfrac{a}{a+b+c}< \dfrac{c}{a+c}< \dfrac{c+b}{a+b+c}\left(3\right)\)

Cộng từng vế của ( 1 ; 2 ; 3 ) , ta có :

\(1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}< 2\)

Bài 1​: Với mọi số x, y. Chứng minh rằng: a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \) b) \(x^2+5y^2-4xy+2x-6y+3>0\) Bài 2: Với mọi số thực x, a. Chứng minh rằng: \(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\) Bài 3: Cho \(a, b, c, d \in R\) và \(b< c < d\). Chứng minh rằng: a) \((a+b+c+d)^2>8(ac+bc)\) b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\) Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\)....
Đọc tiếp

Bài 1​: Với mọi số x, y. Chứng minh rằng:

a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \)
b) \(x^2+5y^2-4xy+2x-6y+3>0\)

Bài 2: Với mọi số thực x, a. Chứng minh rằng:

\(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\)

Bài 3: Cho \(a, b, c, d \in R\)\(b< c < d\). Chứng minh rằng:

a) \((a+b+c+d)^2>8(ac+bc)\)
b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\)

Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\). CMR:

\((p^2-a^2-b^2)(q^2-c^2-d^2)\le(pq-ac-bd)^2\)

Bài 5: \((a_1b_1+a_2b_2)^2\le(a_1^2+a_2^2)(b_1^2+b_2^2)\) dấu bằng xảy ra khi nào?

Bài 6: Cho a>0. Chứng minh rằng:

\(\sqrt{a+\sqrt{a+....+\sqrt{a}}}<\dfrac{1+\sqrt{1+4a}}{2}\)

Bài 7: \(y=\dfrac{x+1}{x^2+x+1}\). Tìm cực trị của y.

Bài 8: Cho \(0\le x, \) \(y\le1 \)\(x+y=3xy\). CMR: \(\dfrac{3}{9}\le \dfrac{1}{4(x+y)}\le \dfrac{3}{8}\)

Bài 9: Cho \(0\le x, \)\(y\le1 \). CMR: \((2^x+2^y)(2^{-x}+2^{-y})\ge \dfrac{9}{2}\)

Bài 10: Ba số thực a, b, c thỏa: \(a^2+b^2+c^2=2\), \(ab+bc+ca=1\) CMR: \(a,b,c \in [\dfrac{3}{4},\dfrac{4}{3}]\)

1
4 tháng 6 2018

@Phùng Khánh Linh

@Aki Tsuki

@Nhã Doanh

@Akai Haruma

@Nguyễn Khang

21 tháng 9 2017

đkxđ a>=0 a khác 1

\(C=\left(\frac{a}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(C=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+3}{a-1}\)

\(C=\frac{\left(a-1\right).\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}\)

b)

\(a=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)

\(\sqrt{a}=\sqrt{3}-1\)

thay vào nha

c) \(C=\frac{\left(a-1\right).\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}\)

để c<0 thì \(\frac{\left(a-1\right).\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}< 0\)

mà \(\sqrt{a}\left(\sqrt{a}+3\right)>0\)

\(\left(a-1\right)\left(\sqrt{a}+1\right)< 0\)

mà \(\sqrt{a}+1>0\)

nên a-1<0

\(0\le a< 1\)

24 tháng 9 2017

\(A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\)

\(a;b;c\) là các số thực dương nên:

\(\left\{{}\begin{matrix}\dfrac{a}{a+b}>\dfrac{a}{a+b+c}\\\dfrac{b}{b+c}>\dfrac{b}{a+b+c}\\\dfrac{c}{c+a}>\dfrac{c}{a+b+c}\end{matrix}\right.\)

Cộng theo 3 vế :

\(A>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=1\)(1)

\(a;b;c\) là 3 số thực dương nên \(\dfrac{a}{a+b};\dfrac{b}{b+c};\dfrac{c}{c+a}< 1\) nên:

\(\left\{{}\begin{matrix}\dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\\\dfrac{b}{b+c}< \dfrac{a+b}{a+b+c}\\\dfrac{c}{c+a}< \dfrac{b+c}{a+b+c}\end{matrix}\right.\)

Cộng theo 3 vế:

\(A< \dfrac{a+c}{a+b+c}+\dfrac{a+b}{a+b+c}+\dfrac{b+c}{a+b+c}=2\)(2)

Từ (1) và (2) ta có:

\(1< A< 2\)

24 tháng 9 2017

cám ơn bn nhiều nha

4 tháng 7 2019

Bài 2 xét x=0 => A =0

xét x>0 thì \(A=\frac{1}{x-2+\frac{2}{\sqrt{x}}}\)

để A nguyên thì \(x-2+\frac{2}{\sqrt{x}}\inƯ\left(1\right)\)

=>cho \(x-2+\frac{2}{\sqrt{x}}\)bằng 1 và -1 rồi giải ra =>x=?

4 tháng 7 2019

1,Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)

=> \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)

\(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

\(b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\)

\(c+2=\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)

=> \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}+...\)

=> \(\frac{\sqrt{a}}{a+2}+...=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)

=> M=0

Vậy M=0 

21 tháng 7 2019

\(\sqrt{a+c}-\sqrt{a}< \sqrt{b+c}-\sqrt{b}\)

\(\Leftrightarrow\sqrt{a+c}+\sqrt{b}< \sqrt{b+c}+\sqrt{a}\)

\(\Leftrightarrow\left(\sqrt{a+c}+\sqrt{b}\right)^2< \left(\sqrt{b+c}+\sqrt{a}\right)^2\)

\(\Leftrightarrow a+b+c+2\sqrt{ab+bc}< a+b+c+2\sqrt{ab+ac}\)

\(\Leftrightarrow2\sqrt{ab+bc}< 2\sqrt{ab+ac}\Leftrightarrow\sqrt{ab+bc}< \sqrt{ab+ac}\)(đúng vs a>b) .Vậy bđt cần cm đúng

NV
5 tháng 3 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{1}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{ac+bc+c^2}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac+bc+c^2}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-b;c=1\\b=-c;a=1\\c=-a;b=1\end{matrix}\right.\)

Thay trường hợp nào vào ta cũng được kết quả như bài toán

5 tháng 3 2020

thanks

Bài 1: Giải các phương trình, hệ phương trình sau: a) \((3x+1)(4x+1)(6x+1)(12x+1)=2\) b) \(\begin{cases} x(x+\dfrac{4}{y})+\dfrac{1}{y^2}=2 \\ x(2+\dfrac{1}{y})+\dfrac{2}{y}=3 \end{cases}\) c) \((x^2-9)\sqrt{2-x}=x(x^2-9)\) d) \(\begin{cases} (x^2+4y^2)^2-4(x^2+4y^2)=5\\ 3x^2+2y^2=5 \end{cases}\) e) \(\sqrt{2x-1}+\sqrt{1-2x^2}=2 \sqrt{x-x^2}\) f) \(\dfrac{9}{x^2}+\dfrac{2x}{\sqrt{2x^2+9}}-1=0\) Bài 2: a) Tìm nghiệm nguyên của phương trình:...
Đọc tiếp

Bài 1: Giải các phương trình, hệ phương trình sau:

a) \((3x+1)(4x+1)(6x+1)(12x+1)=2\)

b) \(\begin{cases} x(x+\dfrac{4}{y})+\dfrac{1}{y^2}=2 \\ x(2+\dfrac{1}{y})+\dfrac{2}{y}=3 \end{cases}\)

c) \((x^2-9)\sqrt{2-x}=x(x^2-9)\)

d) \(\begin{cases} (x^2+4y^2)^2-4(x^2+4y^2)=5\\ 3x^2+2y^2=5 \end{cases}\)

e) \(\sqrt{2x-1}+\sqrt{1-2x^2}=2 \sqrt{x-x^2}\)

f) \(\dfrac{9}{x^2}+\dfrac{2x}{\sqrt{2x^2+9}}-1=0\)

Bài 2: a) Tìm nghiệm nguyên của phương trình: \(3x^2-2y^2-5xy+x-2y-7=0\)

b) Cho các số thực a, b thỏa mãn căn bậc \(\sqrt[3]{a}+\sqrt[3]{b} =\sqrt[3]{b-\dfrac{1}{4}}\). CMR: \(-1< a <0\)

c) Tìm số nguyên a, b, c thỏa: \(a+b+c=0\), \(ab+bc+ca=3\)

d) Với k là số nguyên dương, chứng minh rằng không tồn tại các số nguyên a,b,c khác 0 sao cho \(a+b+c=0\), \(ab+bc+ca+2^k=0 \)

Bài 3: Cho tứ giác ABCD nội tiếp đường tròn tâm O. Đường thẳng vuông góc với AD tại A cắt BC tại E. Đường thẳng vuông góc với AB tại A cắt CD tại F. Chứng minh: O, E, F thẳng hàng.

Bài 4: Cho hình thang ABCD vuông tại A và B, M là trung điểm AB. Đường thẳng qua A vuông góc với MD cắt đường thẳng qua B vuông góc với MC tại N. Chứng minh rằng: MN vuông góc CD.

12
5 tháng 6 2018

Câu 1a thì được nè :v

( 3x + 1)( 4x + 1)( 6x + 1)( 12x + 1) = 2

⇔ 4( 3x + 1)3( 4x + 1)2( 6x + 1)( 12x + 1) = 2.4.3.2

⇔ ( 12x + 4)( 12x + 3)( 12x + 2)( 12x + 1) =48 ( 1)

Đặt : 12x + 1 = a , ta có :

( 1) ⇔ a( a+ 1)( a + 2)( a + 3) = 48

⇔ ( a2 + 3a)( a2 + 3a +2) = 48

Đặt : a3 + 3a = t , ta có :

t( t +2) =48

⇔ t2 + 2t - 48 = 0

⇔ t2 - 6t + 8t - 48 = 0

⇔ t( t - 6) + 8( t - 6) = 0

⇔ ( t - 6)( t + 8) = 0

⇔ t = 6 hoặc t = -8

Tự thế vào mà tìm a sau đó suy ra x nha

AH
Akai Haruma
Giáo viên
6 tháng 6 2018

Bài 1:

b)

HPT \(\left\{\begin{matrix} x^2+\frac{1}{y^2}+\frac{4x}{y}=2\\ 2\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \left(x+\frac{1}{y}\right)^2+\frac{2x}{y}=2\\ 2\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)

Lấy PT(1) trừ 2PT(2) thu được:

\(\left(x+\frac{1}{y}\right)^2-4\left(x+\frac{1}{y}\right)=-4\)

\(\Leftrightarrow \left(x+\frac{1}{y}-2\right)^2=0\Rightarrow x+\frac{1}{y}=2\)

Thay vào thu được \(\frac{x}{y}=-1\)

Theo định lý Viete đảo thì \((x,\frac{1}{y})\) là nghiệm của PT:

\(X^2-2X-1=0\)

\(\Rightarrow (x,\frac{1}{y})=(1+\sqrt{2}; 1-\sqrt{2})\) hoặc \((1-\sqrt{2}; 1+\sqrt{2})\)

Tức là: \((x,y)=(1+\sqrt{2}, -1-\sqrt{2}); (1-\sqrt{2}; -1+\sqrt{2})\)

26 tháng 5 2017

cái chứng minh phải nhỏ hơn 1 chứ bạn ơi

19 tháng 11 2018

Ta co BDT :\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\forall a,b\in R^+\)

Tuong tu cho 2 BDT con lai ta cung co:

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{a+c}\)

Cong theo ve 3 BDT tren ta co

\(VT=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}=VP\)

Dau "=" xay ra khi \(a=b=c\)