\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

Tính P=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2015

Ta có:

(a+b-c)/c=(b+c-a)/a=(c+a-b)/b=(a+b-c+b+c... (a+b+c)=(a+b+c)/(a+b+c)=1  

=>(a+b-c)/c=1 => a+b-c=c =>a+b=2c (1)  

Tương tự: (b+c-a)/a=1 =>b+c=2a (2)

 (c+a-b)/b=1 =>c+a=2b (3)  

Thế (1), (2), (3) vào P, ta có:

 P=(a+b)/a . (b+c)/b .(a+c)/c=2c/a.2a/b.2b/c=2.2.2=8.

Từ giả thiết, suy ra:

 (a+b-c)/c+2=(b+c-a)/a+2=(c+a-b)/b+2

 <=> (a+b+c)/c=(b+c+a)/a=(c+a+b)/b  

Xét 2 trường hợp:  

Nếu a+b+c=0

=> (a+b)/a.(b+c)/b.(c+a)/c=((-c)(-a)(-b))/a...  

Nếu a+b+c khác 0

=>a=b=c =>P=2.2.2=8

Vay :P=8

12 tháng 10 2017

dich duong thien ty phan ......... thu 2 la gi vay ban dien not ho minh cai 

18 tháng 12 2016

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=2\)(T/C...)

Xét a+b+c=0

\(\Rightarrow a+b=-c,c+b=-a,a+c=-b\)

\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{a+c}{a}=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{a}=-1\)

Xét a+b+c\(\ne0\)

\(\Rightarrow a+b=2c,b+c=2a,c+a=2b\)

\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{a+c}{a}=\frac{2c}{b}\cdot\frac{2a}{c}\cdot\frac{2b}{a}=8\)

 

18 tháng 12 2016

Giải:
+) Xét a + b + c = 0

\(\Rightarrow-a=b+c\)

\(\Rightarrow-b=a+c\)

\(\Rightarrow-c=a+b\)

Ta có:

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{-c}{c}=\frac{-a}{a}=\frac{-b}{b}=-1\)

Lại có: \(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=-1\)

+) Xét \(a+b+c\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Ta có:

\(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=2.2.2=8\)

Vậy M = -1 hoặc M = 8

15 tháng 10 2018

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Leftrightarrow\)\(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)

\(\Leftrightarrow\)\(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

\(P=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\frac{a+b}{a}.\frac{b+c}{b}.\frac{c+a}{c}\)

+) Nếu \(a+b+c=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(\Rightarrow\)\(P=\frac{-c}{a}.\frac{-a}{b}.\frac{-b}{c}=\frac{-abc}{abc}=-1\)

+) Nếu \(a+b+c\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{3\left(a+b+c\right)}{a+b+c}=3\)

Suy ra : 

\(\frac{a+b+c}{c}=3\)\(\Leftrightarrow\)\(a+b=2c\)

\(\frac{a+b+c}{a}=3\)\(\Leftrightarrow\)\(b+c=2a\)

\(\frac{a+b+c}{b}=3\)\(\Leftrightarrow\)\(c+a=2b\)

\(\Rightarrow\)\(P=\frac{2c}{a}.\frac{2a}{b}.\frac{2b}{c}=\frac{8abc}{abc}=8\)

Vậy \(P=-1\) hoặc \(P=8\)

Chúc bạn học tốt ~ 

15 tháng 10 2018

ta có: \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}.\)\(=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\end{cases}}}\) => a+ c = a +b - c + b+c-a => a + c = 2b

tương tự như trên ta có: a + b = 2c; b + c = 2a

=> a=b=c

\(\Rightarrow P=\left(1+\frac{b}{a}\right).\left(1+\frac{c}{b}\right).\left(1+\frac{a}{c}\right)=\left(1+\frac{a}{a}\right).\left(1+\frac{c}{c}\right).\left(1+\frac{a}{a}\right)\)\(=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\) ( a,b,c khác 0 )

16 tháng 12 2016

Áp dụng tc của dãy tỉ số bằng nhau ta cso:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\begin{cases}a+b-c=c\\b+c-a=a\\c+a-b=b\end{cases}\)\(\Rightarrow\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}\)

Có: \(P=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{c}{a}\right)\)

\(=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2a\cdot2b\cdot2c}{abc}=8\)

16 tháng 12 2016

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1\)

\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=2\)(T/C...)

Xét a+b+c=0

\(\Rightarrow a+b=-c,b+c=-a,c+a=-b\)

\(\Rightarrow P=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\frac{a+b}{a}\cdot\frac{b+c}{b}\cdot\frac{c+a}{c}=\frac{-c}{a}\cdot\frac{-a}{b}\cdot\frac{-b}{c}=\frac{\left(-c\right)\left(-a\right)\left(-b\right)}{a\cdot b\cdot c}=-1\)

Xét a+b+c\(\ne0\Rightarrow a+b=2c,b+c=2a,c+a=2b\)

\(\Rightarrow P=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{a\cdot b\cdot c}=\frac{2c\cdot2a\cdot2b}{a\cdot b\cdot c}=8\)

Vậy P=8 hoặc P=-1

 

27 tháng 3 2017

Ta có: a+b+c=0 => a+b=-c;b+c=-a;a+c=-b

=>\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{b+a}{b}.\frac{c+b}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=-1\)

27 tháng 3 2017

mày đi mà hỏi

3 tháng 3 2019

help me

=>\(\frac{a-b+c}{2b}+1=\frac{c-a+b}{2a}+1=\frac{a-c+b}{2c}+1\)

\(\Rightarrow\frac{a+b+c}{2b}=\frac{a+b+c}{2a}=\frac{a+b+c}{2c}\)

*TH1: nếu a+b+c=0 => a+b=-c; b+c=-a; c+a=-b

=>P=\(\left(\frac{b+c}{b}\right)\left(\frac{a+b}{a}\right)\left(\frac{c+a}{c}\right)\)

=\(\frac{-a}{b}.\frac{-c}{a}.\frac{-b}{c}=\frac{-\left(a.b.c\right)}{a.b.c}=-1\)

*TH2: Nếu a+b+c khác 0: thì a=b=c

Khi đó P=2.2.2=8

Vậy P= -1 hoặc 8

18 tháng 7 2017

Áp dụng t/c dãy tỉ số = nhau

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) 

\(\Rightarrow\frac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\) 

Tương tự \(b+c=2a;;c+a=2b\) 

\(\Rightarrow D=\left(\frac{a+b}{a}\right)\left(\frac{b+c}{b}\right)\left(\frac{c+a}{c}\right)=\left(\frac{2c}{a}\right)\left(\frac{2a}{b}\right)\left(\frac{2b}{c}\right)=8\)

18 tháng 7 2017

Theo đề ta có :

\(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{a+c-b}{b}+2\)

\(\Rightarrow\frac{a+b-c+2c}{c}=\frac{b+c-a+2a}{a}=\frac{a+c-b+2b}{b}\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

\(\Rightarrow\left(a+b+c\right).\frac{1}{c}=\left(a+b+c\right)\frac{1}{c}=\left(a+b+c\right)\frac{1}{b}\)

(vì  \(a\ne b\ne c\ne0\) \(\frac{\Rightarrow1}{a}\ne\frac{1}{b}\ne\frac{1}{c}\ne0\) \(\Rightarrow a+b+c=0\))

* a+b+c=0

=>a+b=-c ; b+c=-a ; a+c =-b

\(D=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\)

\(=\frac{a+b}{a}.\frac{b+c}{b}.\frac{a+c}{c}=\frac{-c.-a.-b}{a.b.c}=\frac{-1.\left(a.b.c\right)}{a.b.c}=-1\)

Vậy : D=-1

Ta có : \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\left(1\right)\)  Áp dụng t/c dãy tỉ số bằng nhau, ta có : 

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c-b}{c+a+b}\)

\(=\frac{\left(a+a-a\right)+\left(b+b-b\right)+\left(c+c-c\right)}{a+b+c}=\frac{a+b+c}{a+b+c}=1\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow a=b=c\)

 \(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)+\left(1+\frac{c}{b}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)

\(\)\(\Rightarrow B=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=2^3=8\)

Vậy \(B=8\)

áp dụng tính chất dãy tỉ số bằng nhau có

\(\frac{a+b-c}{c}\)=\(\frac{b+c-a}{a}\)=\(\frac{c+a-b}{b}\)=\(\frac{a+b-c+b+c-a+c+a-b}{a+b+c}\)=\(\frac{a+b+c}{a+b+c}\)=1

=>\(\frac{a+b-c}{c}\)=1=>a+b-c=c=>a+b=2c

tương tự ta được b+c=2a, c+a=2b

rồi bạn thay vào B là xong