\(\ge\)0 và a+b+c=1

Chứng minh rằng:

\(a+2b+c...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2018

vì a,b,c>=0 =>a=1;b=0;c=0 hoặc a=0;b=1;c=0 hoặc a=0;b=0;c=1

=>a+2b+c>0 mà 1-1=0 => 4(1-a)(1-b)(1-c)=0

=>a+2b+c>=4(1-a)(1-b)(1-c)

2 tháng 5 2017

a) Ta có: \(\left(a-b\right)^2\ge0\)

=>\(a^2+b^2-2ab\ge0\left(đpcm\right)\)

b) \(\left(a+b\right)^2\ge0\)

=> \(a^2+b^2+2ab\ge0\)

<=> \(a^2+b^2\ge-2ab\)

<=> \(\dfrac{a^2+b^2}{2}\ge ab\) (đpcm)

c) ta có: \(\left(a+1\right)^2=a^2+2a+1\)

\(a\left(a+2\right)=a^2+2a\)

Vậy từ 2 điều trên => \(a\left(a+2\right)< \left(a+1\right)^2\)

d) \(m^2+n^2+2\ge2\left(m+n\right)\) (*)

<=>m2 - 2m +1 +n2 - 2n +1 \(\ge0\)

<=> \(\left(m-1\right)^2+\left(n-1\right)^2\ge0\) (1)

(1) đúng => (*) đúng

d) Bạn ấy giải rồi ,mình không giải nữa

2 tháng 5 2017

e) Theo BĐT cauchy ta có: \(\dfrac{a^2+b^2}{2}\ge ab\Rightarrow\dfrac{a^2+b^2}{ab}\ge2\)

\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\Leftrightarrow\left(\dfrac{a}{b}+1\right)+\left(\dfrac{b}{a}+1\right)\ge4\)

\(\Leftrightarrow\dfrac{a+b}{b}+\dfrac{a+b}{a}\ge4\)

\(\Rightarrow\left(a+b\right)\left(\dfrac{1}{b}+\dfrac{1}{a}\right)\ge4\) (đpcm)

Vậy..........

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).Bài 2: Cho các số thực dương a,b,c,d. Chứng minh...
Đọc tiếp

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!

Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).

Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:

\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).

Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).

Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng: 

a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).

b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).

c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Bài 5: Cho a,b,c >0. Chứng minh rằng:

\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).

8
21 tháng 10 2019

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

21 tháng 10 2019

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

22 tháng 9 2019

a) \(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\left(đpcm\right)\)

22 tháng 9 2019

Áp dụng BĐT Cô -si cho 3 số dương:

\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

NV
27 tháng 2 2020

a/ Bạn cứ khai triển biến đổi tương đương thôi (mà làm biếng lắm)

b/ Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\Rightarrow xyz=1\)

\(VT=\frac{x^3yz}{y+z}+\frac{y^3zx}{z+x}+\frac{xyz^3}{x+y}=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

\(VT\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\left(x+y+z\right)\ge\frac{1}{2}.3\sqrt[3]{xyz}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

27 tháng 2 2020

cảm ơn bạn nhưng nạ có thể giải nốt cậu a hộ mình đc ko

leuleu

23 tháng 4 2017

c) Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}\ge\dfrac{\left(1+1+1\right)^2}{A+B+C}=\dfrac{9}{A+B+C}\)

Dấu "=" xảy ra khi và chỉ khi\(\dfrac{1}{A}=\dfrac{1}{B}=\dfrac{1}{C}\)

AH
Akai Haruma
Giáo viên
3 tháng 11 2017

Lời giải:

\(\text{VT}=\frac{1}{a(a-b)(a-c)}+\frac{1}{b(b-c)(b-a)}+\frac{1}{c(c-a)(c-b)}\)

\(=\frac{bc(c-b)}{abc(a-b)(b-c)(c-a)}+\frac{ac(a-c)}{abc(a-b)(b-c)(c-a)}+\frac{ab(b-a)}{abc(a-b)(b-c)(c-a)}\)

\(=\frac{bc(c-b)+ac(a-c)+ab(b-a)}{abc(a-b)(b-c)(c-a)}\) (1)

Xét \(bc(c-b)+ac(a-c)+ab(b-a)=bc(c-b)-ac[(c-b)+(b-a)]+ab(b-a)\)

\(=(c-b)(bc-ac)+(b-a)(ab-ac)=c(c-b)(b-a)+a(b-a)(b-c)\)

\(=(c-b)(b-a)(c-a)=(a-b)(b-c)(c-a)\) (2)

Từ \((1),(2)\Rightarrow \text{VT}=\frac{(a-b)(b-c)(c-a)}{abc(a-b)(b-c)(c-a)}=\frac{1}{abc}\)

Ta có đpcm.