Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì a,b,c>=0 =>a=1;b=0;c=0 hoặc a=0;b=1;c=0 hoặc a=0;b=0;c=1
=>a+2b+c>0 mà 1-1=0 => 4(1-a)(1-b)(1-c)=0
=>a+2b+c>=4(1-a)(1-b)(1-c)
a) Ta có: \(\left(a-b\right)^2\ge0\)
=>\(a^2+b^2-2ab\ge0\left(đpcm\right)\)
b) \(\left(a+b\right)^2\ge0\)
=> \(a^2+b^2+2ab\ge0\)
<=> \(a^2+b^2\ge-2ab\)
<=> \(\dfrac{a^2+b^2}{2}\ge ab\) (đpcm)
c) ta có: \(\left(a+1\right)^2=a^2+2a+1\)
\(a\left(a+2\right)=a^2+2a\)
Vậy từ 2 điều trên => \(a\left(a+2\right)< \left(a+1\right)^2\)
d) \(m^2+n^2+2\ge2\left(m+n\right)\) (*)
<=>m2 - 2m +1 +n2 - 2n +1 \(\ge0\)
<=> \(\left(m-1\right)^2+\left(n-1\right)^2\ge0\) (1)
(1) đúng => (*) đúng
d) Bạn ấy giải rồi ,mình không giải nữa
e) Theo BĐT cauchy ta có: \(\dfrac{a^2+b^2}{2}\ge ab\Rightarrow\dfrac{a^2+b^2}{ab}\ge2\)
\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\Leftrightarrow\left(\dfrac{a}{b}+1\right)+\left(\dfrac{b}{a}+1\right)\ge4\)
\(\Leftrightarrow\dfrac{a+b}{b}+\dfrac{a+b}{a}\ge4\)
\(\Rightarrow\left(a+b\right)\left(\dfrac{1}{b}+\dfrac{1}{a}\right)\ge4\) (đpcm)
Vậy..........
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
a) \(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\left(đpcm\right)\)
Áp dụng BĐT Cô -si cho 3 số dương:
\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
a/ Bạn cứ khai triển biến đổi tương đương thôi (mà làm biếng lắm)
b/ Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\Rightarrow xyz=1\)
\(VT=\frac{x^3yz}{y+z}+\frac{y^3zx}{z+x}+\frac{xyz^3}{x+y}=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
\(VT\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\left(x+y+z\right)\ge\frac{1}{2}.3\sqrt[3]{xyz}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
cảm ơn bạn nhưng nạ có thể giải nốt cậu a hộ mình đc ko
Lời giải:
\(\text{VT}=\frac{1}{a(a-b)(a-c)}+\frac{1}{b(b-c)(b-a)}+\frac{1}{c(c-a)(c-b)}\)
\(=\frac{bc(c-b)}{abc(a-b)(b-c)(c-a)}+\frac{ac(a-c)}{abc(a-b)(b-c)(c-a)}+\frac{ab(b-a)}{abc(a-b)(b-c)(c-a)}\)
\(=\frac{bc(c-b)+ac(a-c)+ab(b-a)}{abc(a-b)(b-c)(c-a)}\) (1)
Xét \(bc(c-b)+ac(a-c)+ab(b-a)=bc(c-b)-ac[(c-b)+(b-a)]+ab(b-a)\)
\(=(c-b)(bc-ac)+(b-a)(ab-ac)=c(c-b)(b-a)+a(b-a)(b-c)\)
\(=(c-b)(b-a)(c-a)=(a-b)(b-c)(c-a)\) (2)
Từ \((1),(2)\Rightarrow \text{VT}=\frac{(a-b)(b-c)(c-a)}{abc(a-b)(b-c)(c-a)}=\frac{1}{abc}\)
Ta có đpcm.