Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ab\left(a+b\right)=a^2+b^2-ab\Rightarrow ab=\dfrac{a^2+b^2-ab}{a+b}\)
\(A=\dfrac{a^3+b^3}{a^3b^3}=\dfrac{\left(a+b\right)\left(a^2+b^2-ab\right)}{a^3b^3}=\dfrac{\left(a+b\right)ab\left(a+b\right)}{a^3b^3}=\dfrac{\left(a+b\right)^2}{a^2b^2}\)
\(=\left(\dfrac{a+b}{ab}\right)^2=\left(\dfrac{a+b}{\dfrac{a^2+b^2-ab}{a+b}}\right)^2=\left(\dfrac{\left(a+b\right)^2}{a^2+b^2-ab}\right)^2\)
Ta có: \(a^2+b^2-ab>0;\forall a;b\ne0\Rightarrow\dfrac{\left(a+b\right)^2}{a^2+b^2-ab}\ge0\)
\(\dfrac{\left(a+b\right)^2}{a^2+b^2-ab}=\dfrac{a^2+b^2+2ab}{a^2+b^2-ab}=\dfrac{4\left(a^2+b^2-ab\right)-3\left(a^2+b^2-2ab\right)}{a^2+b^2-ab}=4-\dfrac{3\left(a-b\right)^2}{a^2+b^2-ab}\le4\)
\(\Rightarrow0\le\dfrac{\left(a+b\right)^2}{a^2+b^2-ab}\le4\)
\(\Rightarrow A\le16\)
\(A_{max}=16\) khi \(a=b=\dfrac{1}{2}\)
TH1: \(a=b=\dfrac{1}{2}\Rightarrow m=\pm1\)
TH2: \(a\ne b\)
\(a^4-b^4=a^3-b^3\Leftrightarrow\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)=\left(a-b\right)\left(a^2+b^2+ab\right)\)
\(\Rightarrow a^2+b^2=a^2+b^2+ab\)
\(\Rightarrow ab=0\Rightarrow\dfrac{m^2+1}{8}=0\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
Vậy \(m=\pm1\)
Một số bất đẳng thức thường được dùng (chứng minh rất đơn giản)
Với a, b > 0, ta có:
\(a^2+b^2\ge2ab\)
\(\left(a+b\right)^2\ge4ab\)
\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Dấu "=" của các bất đẳng thức trên đều xảy ra khi a = b.
Phân phối số hạng hợp lí để áp dụng Côsi
\(1\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)
\(\ge6\)
Dấu "=" xảy ra khi a = b = 1/2.
\(2\text{) }P\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge4\)
\(3\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{1}{4ab}\)
\(\ge\frac{1}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{1}{\left(a+b\right)^2}\ge1+2+1=4\)
1/ Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel :
\(A\ge\frac{\left(a+b+c\right)^2}{3\left(a+b+c\right)}=\frac{a+b+c}{3}=\frac{3}{3}=1\)
Dấu "=" xảy ra <=> a=b=c=1
A=\(\frac{4}{2ab}+\frac{3}{a^2+b^2}+14\)
=\(\frac{1}{2ab}+3\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)+14\)
Áp dụng BĐT AM-GM cho 2 số không âm có:
\(a+b\ge2\sqrt{ab}\)\(\Leftrightarrow\)\(2\sqrt{ab}\le1\Leftrightarrow ab\le\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{2ab}\ge2\)(1)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)ta có:\(\frac{1}{2ab}+\frac{1}{a^2+b^2}\ge\frac{4}{\left(a+b\right)^2}=4\)(2)
Từ (1) và (2) =>A\(\ge\)2+3.4+14=28
Dấu "=" xảy ra\(\Leftrightarrow\)a=b=\(\frac{1}{2}\)
A=\(\frac{2}{ab}+\frac{3}{a^2+b^2}+14=\frac{1}{2ab}+\frac{3}{2ab}+\frac{3}{a^2+b^2}+14=\frac{1}{2ab}+3\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)\)+14
Áp dụng bđt Cauchy Schawrz dạng Engel: \(\frac{1}{2ab}+\frac{1}{a^2+b^2}\ge\frac{\left(1+1\right)^2}{2ab+a^2+b^2}=\frac{2^2}{\left(a+b\right)^2}=\frac{4}{1^2}=4\)(1)
Mặt khác áp dụng bđt Cô-si: \(a^2+b^2\ge2ab\Leftrightarrow a^2+b^2+2ab\ge4ab\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow1^2\ge4ab\Leftrightarrow2ab\le\frac{1}{2}\Leftrightarrow\frac{1}{2ab}\ge2\)(2)
Từ (1) và (2) suy ra \(A=\frac{1}{2ab}+3\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)+14\ge2+3.4+14=28\)
Dấu "=" xảy ra khi a=b=1/2