\(a^2+b^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

Vì a + b = -5 nên a là số âm hoặc b là số âm hoặc cả 2 là số âm

Nhưng vì a.b = số dương nên cả a và b đều là số âm

Ta có :

-5 = -1 + -4

   = - 2 + -3

Ta sẽ lấy 2 số nào có tích bằng 6

Ta thấy : -2 x -3 = 6

Vậy 2 số a và b là -2 và -3

-22 + -32 = -4 + -9 = -13

Đáp số : -13

26 tháng 7 2017

Vì a + b = -5 nên a là số âm hoặc b là số âm hoặc cả 2 là số âm

Nhưng vì a.b = số dương nên cả a và b đều là số âm

Ta có :

-5 = -1 + -4

   = - 2 + -3

Ta sẽ lấy 2 số nào có tích bằng 6

Ta thấy : -2 x -3 = 6

Vậy 2 số a và b là -2 và -3

-22 + -32 = -4 + -9 = -13

Đáp số : -13

\(a,a^2+b^2\)

\(=\left(a+b\right)^2-2ab\)

Thay \(a+b=-5;a.b=6\) vào biểu thức ta được :

\(a,=\left(-5\right)^2-2.6\)

\(=25-12\)

\(=13\)

21 tháng 8 2020

a, \(a^2+b^2=a^2+2ab+b^2-2ab\)

\(=\left(a+b\right)^2-2ab=\left(-5\right)^2-2.6=25-12=13\)

b, \(a^3+b^3=\left(a+b\right)^3-3a^2b-3b^2a\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)=\left(-5\right)^3-3.6.\left(-5\right)\)

\(=-125-18.\left(-5\right)=-125+90=-35\)

14 tháng 10 2019

\(a^2+b^2=\left(a+b\right)^2-2ab=12^2-70=144-70=74.\)

\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=12^3-105.12=468.\)

\(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=74^2-2.35^2=3026.\)

\(\Rightarrow\)\(a^5+b^5=\left(a^2+b^2\right)\left(a^3+b^3\right)-a^2b^3-a^3b^2=\left(a^2+b^2\right)\left(a^3+b^3\right)-a^2b^2\left(a+b\right)\)

\(=74.468-35^2.12=20400.\)

\(\Rightarrow a^6+b^6=\left(a^5+b^5\right)\left(a+b\right)-ab^5-a^5b=\left(a^5+b^5\right)\left(a+b\right)-ab\left(a^4+b^4\right)\)

\(=20400.12-35.3026=138890.\)

13 tháng 8 2020

a) A = a3 + b3 = (a + b)(a2 - ab + b2) = (a + b)3 - 3ab(a + b)

= 23 - 3.(-1).2 = 8 + 6 = 14

b) B = a4 + b4 = a4 - 2a2b2 + b4 + 2a2b2 = (a2 - b2)2 + 2a2b2 

= (a - b)2(a + b)2 + 2(ab)2 = (a2 - 2ab + b2)(a + b)2 + 2(ab)2

= (a + b)4 + 2(ab)2 - 4ab(a + b)2 = 24 + 2.(-1)2 - 4.(-1).22 = 16 + 2 + 16 = 34

c) Ta có: a2 + b2 = (a2 + 2ab + b2) - 2ab = (a + b)2 - 2ab = 22 - 2.(-1) = 4 + 2 = 6

=> (a2 + b2)(a3 + b3) =  6.14 = 84

=> a5 + a2b3 + a3b2 + b5 = a5 + b5 + a2b2(a + b) = 84

=>C = 84 - (ab)2(a + b) = 84 - (-1)2.2 = 82

d) D = a6 + b6 = a6 + 3a4b2 + 3a2b4 + a6 - 3a2b2(a2 + b2) = (a2 + b2)3 - 3(ab)2(a2 + b2) = 63 - 3(-1)2. 6 = 198

13 tháng 8 2020

a) Ta có : a + b = 2

=> (a + b)3 = 8

=> a3 + b3 + 3a2b + 3ab2 = 8

=> a3 + b3 + 3ab(a + b) = 8

=> a3 + b3 - 6 = 8

=> a3 + b3 = 14

b) Ta có a + b = 2

=> (a + b)4  = 16

=> a4 + b4 + 4a3b + 4ab3 = 16

=> a4 + b4 + 4ab(a2 + b2) = 16 (1)

Lại có a + b = 2

=> (a + b)2 = 4

=> a2 + b2 + 2ab = 4

=> a2 + b2 = 6

Khi đó (1) <=> a4 + b4 - 24 = 16

=> a4 + b4 = 40

c) a + b = 2

=> (a + b)5 = 32

=> a5 + b5 + 5a4b + 5ab4 = 32

=> a5 + b5 + 5ab(a3 + b3) = 32

Vận dụng kết quả câu b

=> a5 + b5 - 70 = 32 

a5 + b5 = 102

d) a + b = 2

=> (a + b)6 = 64

=> a6 + b6 + 6a5b + 6ab5 = 64

=> a6 + b6 + 6ab(a4 + b4) = 64

Vận dụng kết quả câu c 

=> a6 + b6 - 240 = 64

=> a6 + b6 = 304

14 tháng 10 2020

1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1

Thay vào ab=cd được ka1b=bc1d nên

a1b=c1d  (1)

Ta có: a1\(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m =  c1d nên a1m=d

Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)

\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)

Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)

14 tháng 10 2020

2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.

Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.

Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)

b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)

Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......

21 tháng 7 2016

Bài 2 :

Ta có: (10a + 5)2 = (10a)2 + 2 .10a . 5 + 52

                          = 100a2 + 100a + 25

                          = 100a(a + 1) + 25.

Cách tính nhẩm bình thường của một số tận cùng bằng chữ số 5;

Ta gọi a là số chục của số tự nhiên có tận cùng bằng 5 => số đã cho có dạng 10a + 5 và ta được

(10a + 5)2 = 100a(a + 1) + 25

Vậy để tính bình phương của một số tự nhiên có tận cùng bởi chữ số 5 ta tính tích a(a + 1) rồi viết 25 vào bên phải.

Áp dụng;

- Để tính 252 ta tính 2(2 + 1) = 6 rồi viết tiếp 25 vào bên phải ta được 625.

- Để tính 352 ta tính 3(3 + 1) = 12 rồi viết tiếp 25 vào bên phải ta được 1225.

- 652 = 4225

- 752 = 5625.

 

21 tháng 7 2016

Bài 4 : 

a) 342 + 662 + 68 . 66 = 342 + 2 . 34 . 66 + 662 = (34 + 66)2 = 1002 = 10000.

b) 742 + 242 – 48 . 74 = 742 - 2 . 74 . 24 + 242 = (74 - 24)

 =502 =2500

 

10 tháng 6 2019

#)Giải :

\(a^2+b^2\le1+ab\)

\(\Leftrightarrow a^2-ab+b^2\le1\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)

\(\Leftrightarrow a^3+b^3\le a+b\)

\(\Leftrightarrow\left(a^3+b^3\right)\left(a^3+b^3\right)\le\left(a+b\right)\left(a^5+b^5\right)\left(a^3+b^3=a^5+b^5\right)\)

\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+ab^5+a^5b+b^6\)

\(\Leftrightarrow a^5b+ab^5\ge2a^3b^3\)

\(\Leftrightarrow a^5b+ab^5-2a^3b^3\ge0\)

\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow ab\left(a^2-b^2\right)^2\ge0\)( luôn đúng \(\forall a;b>0\))

Vậy \(a^2+b^2\le1+ab\left(đpcm\right)\)

P/s : Bài này mk tham khảo trên mạng ( tại thấy rảnh nên chép hộ ^^ )

5 tháng 11 2017

khó quá

27 tháng 3 2018

dễ mà cô nương

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)

\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)

ta có 

\(a=-5-b\)

suy ra

\(a^3-b^3=19\left(-5-2b\right)\) " xong "

2, trên mạng đầy

3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)

4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm

5. trên mạng đầy

6 , trên mang jđầy