K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2020

tao loa

2 tháng 8 2017

Áp dụng BĐT AM - GM, ta có:

\(M=a+b+\frac{1}{a}+\frac{1}{b}\)

\(=1+\frac{a+b}{ab}\)

\(\ge1+\frac{1}{\frac{\left(a+b\right)^2}{4}}\)

\(=5\)

Dấu "=" xảy ra khi a = b = 0,5

13 tháng 5 2021

Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\) \(\left(x,y,z>0\right)\)

Theo đề \(ab+bc+ca=3abc\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=\frac{3}{xyz}\)

\(\Rightarrow x+y+z=3\)

Và \(\sqrt{\frac{ab}{a+b+1}}+\sqrt{\frac{bc}{b+c+1}}+\sqrt{\frac{ca}{c+a+1}}\)

\(=\sqrt{\frac{\frac{1}{xy}}{\frac{1}{x}+\frac{1}{y}+1}}+\sqrt{\frac{\frac{1}{yz}}{\frac{1}{y}+\frac{1}{z}+1}}+\sqrt{\frac{\frac{1}{zx}}{\frac{1}{z}+\frac{1}{x}+1}}\)

\(=\frac{1}{\sqrt{x+y+xy}}+\frac{1}{\sqrt{y+z+yz}}+\frac{1}{\sqrt{z+x+zx}}\)

\(\ge\frac{9}{\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}}\) (Cauchy Schwarz)

Ta có: \(\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\)

\(=\sqrt{\left(\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\right)^2}\)

\(\le\sqrt{3\left(x+y+xy+y+z+yz+z+x+zx\right)}\)

\(=\sqrt{\left[2\left(x+y+z\right)+\left(xy+yz+zx\right)\right]}\)

\(\le\sqrt{6+\frac{\left(x+y+z\right)^2}{3}}=\sqrt{6+\frac{3^2}{3}}=3\)

\(\Rightarrow\sqrt{\frac{ab}{a+b+1}}+\sqrt{\frac{bc}{b+c+1}}+\sqrt{\frac{ca}{c+a+1}}\)

\(\ge\frac{9}{\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}}\ge\frac{9}{3}=3\)

Dấu "=" xảy ra khi: \(x=y=z=1\Rightarrow a=b=c=1\)

13 tháng 5 2021

cảm ơn bạn :>

23 tháng 1 2021

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

NV
23 tháng 1 2021

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

10 tháng 2 2021

có ở trong câu hỏi tương tự nhé

\(S=13\left(\frac{a}{18}+\frac{c}{24}\right)+13\left(\frac{b}{24}+\frac{c}{48}\right)+\left(\frac{a}{9}+\frac{b}{6}+\frac{2}{ab}\right)+\left(\frac{a}{18}+\frac{c}{24}+\frac{2}{ac}\right)+\left(\frac{b}{8}+\frac{c}{16}+\frac{2}{bc}\right)+\left(\frac{a}{9}+\frac{b}{6}+\frac{c}{12}+\frac{8}{abc}\right)\)Cô si các ngoặc là được nhé 

15 tháng 1 2019

Có: \(\frac{2018a+3}{1+b^2}=2018a+3-\frac{b^2\left(2018a+3\right)}{1+b^2}\) (Làm tắt ráng hiểu ^^)

                                \(\ge2018a+3-\frac{b^2\left(2018a+3\right)}{2b}\left(Cauchy\right)\)

                                  \(=2018a+3-\frac{b\left(2018a+3\right)}{2}\)

                                   \(=2018a+3-\frac{2018ab+3b}{2}\)

Tương tự \(\frac{2018b+3}{1+c^2}\ge2018b+3-\frac{2018bc+3b}{2}\)

                \(\frac{2018c+3}{1+a^2}\ge2018c+3-\frac{2018ac+3a}{2}\)

CỘng vế với vế của các bđt trên lại ta được 

\(A\ge2018\left(a+b+c\right)+9-\frac{2018\left(ab+bc+ca\right)+3\left(a+b+c\right)}{2}\)

     \(=2018\left(a+b+c\right)+9-\frac{6054+3\left(a+b+c\right)}{2}\)

       \(=2018\left(a+b+c\right)-\frac{3\left(a+b+c\right)}{2}-3018\)

       \(=\frac{4033\left(a+b+c\right)}{2}-3018\)

Ta có bđt phụ : \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\)(1)

Thật vậy \(\left(1\right)\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)   

                       \(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\ge3ab+3bc+3ca\)

                     \(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)

                      \(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

                   \(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(Luôn đúng)

Nên (1) được chứng minh

ÁP dụng (1) ta được \(A\ge\frac{4033\left(a+b+c\right)}{2}-3018\ge\frac{4033}{2}\sqrt{3\left(ab+bc+ca\right)}-3018\)

                                                                                                     \(=\frac{4033}{2}\sqrt{3.3}-3018\)

                                                                                                       \(=\frac{6063}{2}\)

Dấu "='' xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b=c\\ab+bc+ca=3\end{cases}\Leftrightarrow}a=b=c=1\)

Vậy \(A_{min}=\frac{6063}{2}\Leftrightarrow a=b=c=1\)

AH
Akai Haruma
Giáo viên
18 tháng 12 2021

Đề có vấn đề. Bạn coi lại.