K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2015

Chia cả tử và mẫu của mỗi phân số tương ứng cho b2015; b2014

=> cần chứng minh: \(\frac{\left(\frac{a}{b}\right)^{2015}-1}{\left(\frac{a}{b}\right)^{2015}+1}>\frac{\left(\frac{a}{b}\right)^{2014}-1}{\left(\frac{a}{b}\right)^{2014}+1}\)

Ta có: \(VT=\frac{\left(\frac{a}{b}\right)^{2015}-1}{\left(\frac{a}{b}\right)^{2015}+1}=\frac{\left(\frac{a}{b}\right)^{2015}+1}{\left(\frac{a}{b}\right)^{2015}+1}-\frac{2}{\left(\frac{a}{b}\right)^{2015}+1}=1-\frac{2}{\left(\frac{a}{b}\right)^{2015}+1}\)

\(VP=\frac{\left(\frac{a}{b}\right)^{2014}-1}{\left(\frac{a}{b}\right)^{2014}+1}=\frac{\left(\frac{a}{b}\right)^{2014}+1}{\left(\frac{a}{b}\right)^{2014}+1}-\frac{2}{\left(\frac{a}{b}\right)^{2014}+1}=1-\frac{2}{\left(\frac{a}{b}\right)^{2014}+1}\)

Vì a> b > 0 => a/b  > 1. Do đó:

\(\left(\frac{a}{b}\right)^{2015}+1>\left(\frac{a}{b}\right)^{2014}+1\)

=> \(\frac{2}{\left(\frac{a}{b}\right)^{2015}+1}1-\frac{2}{\left(\frac{a}{b}\right)^{2014}+1}\)

=> VT > VP 

25 tháng 3 2017

a^2014+b^2014+c^2014=a^2015+b^2015+c^2015=1

<=> (a^2014-a^2015)+(b^2014-b^2015)+(c^2014-c^2015)=0

suy ra \(\hept{\begin{cases}a^{2014}=a^{2015}\\b^{2014}=b^{2015}\\c^{2014}=c^{2015}\end{cases}}\)

<=> \(\hept{\begin{cases}\orbr{\begin{cases}a=1\\a=0\end{cases}}\\\orbr{\begin{cases}b=1\\b=0\end{cases}}\\\orbr{\begin{cases}c=1\\c=0\end{cases}}\end{cases}}\)

<=> a=1 hoặc a=0; b=1 or b=0; c=1;c=0 mà a^2014+b^2014+c^2014=1

suy ra a,b,c có 2 trong 3 số bằng 0 và 1 số bằng 1

P=1

b: \(=\dfrac{2014\cdot2015^2+2014\cdot2016-2016\cdot2015^2+2016\cdot2014}{2014\cdot2013^2-2014\cdot2012-2012\cdot2013^2-2012\cdot2014}\)

\(=\dfrac{2015^2\cdot\left(-2\right)+2\cdot\left(2015^2-1\right)}{2013^2\cdot\left(-2\right)-2\cdot\left(2013^2-1\right)}\)

\(=\dfrac{\left(-2\right)\cdot\left(2015^2-2015^2+1\right)}{\left(-2\right)\cdot\left(2013^2+2013^2-1\right)}=\dfrac{1}{2\cdot2013^2}\)

30 tháng 4 2019

Ta có : \(a^{2012}+b^{2012}+a^{2014}+b^{2014}=\left(a^{2012}+a^{2014}\right)+\left(b^{2012}+b^{2014}\right)\ge2a^{2013}+2b^{2013}\)

( AD BĐT Cô - si cho a ; b dương ) 

Dấu " = " xảy ra \(\Leftrightarrow a^{2012}=a^{2014};b^{2012}=b^{2014}\) \(\Leftrightarrow a=b=1\left(a,b>0\right)\)

\(\Rightarrow a^{2015}+b^{2015}=1+1=2\)

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

Lời giải:

Đặt $(a^{1007}, b^{1007}, c^{1007})=(x,y,z)$

Khi đó, ĐKĐB tương đương với:

$x^2+y^2+z^2=xy+yz+xz$

$\Leftrightarrow 2x^2+2y^2+2z^2=2xy+2yz+2xz$

$\Leftrightarrow (x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)=0$

$\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0$

Ta thấy $(x-y)^2, (y-z)^2, (z-x)^2\geq 0$ với mọi $x,y,z$

Do đó để tổng của chúng bằng $0$ thì $(x-y)^2=(y-z)^2=(z-x)^2=0$

$\Rightarrow x=y=z$

$\Leftrightarrow a^{1007}=b^{1007}=c^{1007}$

$\Leftrightarrow a=b=c$

Khi đó:

$A=0^{2014}+0^{2015}+0^{2016}=0$

13 tháng 1 2017

bạn xem lại đề thử có sai không?

13 tháng 1 2017

Ta có:

\(\frac{2015^2-2014^2}{2015^2+2014^2}-\frac{\left(2015-2014\right)^2}{\left(2015+2014\right)^2}\)

\(=\frac{2015+2014}{2015^2+2014^2}-\frac{1}{\left(2015+2014\right)^2}\)

Ta thấy phân số thứ nhất có tử lớn hơn phân số thứ 2 và có mẫu bé hơn nên phân số thứ nhất > phâm số thứ 2

Hay \(\frac{2015^2-2014^2}{2015^2+2014^2}>\frac{\left(2015-2014\right)^2}{\left(2015+2014\right)^2}\)