\(a^{2014}+b^{2014}+c^{2014}=a^{1007}.b^{1007}+b^{1007}.c^{1007}+c^{1007}.a^{1007}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

Lời giải:

Đặt $(a^{1007}, b^{1007}, c^{1007})=(x,y,z)$

Khi đó, ĐKĐB tương đương với:

$x^2+y^2+z^2=xy+yz+xz$

$\Leftrightarrow 2x^2+2y^2+2z^2=2xy+2yz+2xz$

$\Leftrightarrow (x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)=0$

$\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0$

Ta thấy $(x-y)^2, (y-z)^2, (z-x)^2\geq 0$ với mọi $x,y,z$

Do đó để tổng của chúng bằng $0$ thì $(x-y)^2=(y-z)^2=(z-x)^2=0$

$\Rightarrow x=y=z$

$\Leftrightarrow a^{1007}=b^{1007}=c^{1007}$

$\Leftrightarrow a=b=c$

Khi đó:

$A=0^{2014}+0^{2015}+0^{2016}=0$

19 tháng 11 2017

cho mk đúng ko

Giải:
Ta có:
a^2014 + b^2014 + c^2014 = a^1007b^1007 + b^1007c^1007 + c^1007a^1007
=> 2(a^2014 + b^2014 + c^2014) = 2(a^1007b^1007 + b^1007c^1007 + c^1007a^1007)
=> ( a^1007 - b^1007 )^2 + (b^1007 - c^1007)^2 + ( c^1007 - a^1007)^2 = 0
=> a - b - c = 0
Vậy A = 0

19 tháng 11 2017

Giải:
Ta có:
a^2014 + b^2014 + c^2014 = a^1007b^1007 + b^1007c^1007 + c^1007a^1007
=> 2(a^2014 + b^2014 + c^2014) = 2(a^1007b^1007 + b^1007c^1007 + c^1007a^1007)
=> ( a^1007 - b^1007 )^2 + (b^1007 - c^1007)^2 + ( c^1007 - a^1007)^2 = 0
=> a - b - c = 0
Vậy A = 0

31 tháng 10 2017

Ta có: \(a^{2014}+b^{2014}+c^{2014}=a^{1007}b^{1007}+b^{1007}c^{1007}+c^{1007}a^{1007}\)

\(\Rightarrow a=b=c\) ( tự CM lấy: nhân 2 vế với 2, chuyển vế, nhóm thành từng hằng đẳng thức rồi cm hoặc CM tương tự như bài \(a^2+b^2+c^2=ab+bc+ca\) )

\(\Rightarrow M=\left(a-b\right)^{20}+\left(b-c\right)^{11}+\left(a-c\right)^{2014}=0\)

Vậy M = 0

a: \(\left(a^2-b^2\right)^2+\left(2ab\right)^2\)

\(=a^4-2a^2b^2+b^4+4a^2b^2\)

\(=a^4+2a^2b^2+b^4=\left(a^2+b^2\right)^2\)

b: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

\(=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

c: \(\left(ax+b\right)^2+\left(a-bx\right)^2+c^2x^2\)

\(=a^2x^2+b^2+a^2+b^2x^2+c^2x^2\)

\(=a^2\left(x^2+1\right)+b^2\left(x^2+1\right)+c^2x^2\)

\(=\left(x^2+1\right)\left(a^2+b^2\right)+c^2x^2\)