K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 11 2023

Lời giải:

Áp dụng BĐT Cô-si cho các số dương:

$a+2b=\frac{a+b}{2}+\frac{a+b}{2}+b\geq 3\sqrt[3]{\frac{b(a+b)^2}{4}}$

$\Rightarrow 4(a+2b)^3\geq 4.[3\sqrt[3]{\frac{(a+b)^2b}{4}}]^3$

$=27b(a+b)^2$ (đpcm)

19 tháng 8 2015

Đề hoàn toàn đúng mà: Ta có

\(\left(a^4+b^4\right)-\left(a^3b+ab^3\right)=\left(a-b\right)\left(a^3-b^3\right)=\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\).  (Ở đây chú ý rằng \(a^2+ab+b^2=\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\ge0\)).

Mặt khác \(\left(a^4+b^4\right)-2a^2b^2=\left(a^2-b^2\right)^2\ge0.\)

Cộng hai bất đẳng thức lại ta có điều phải chứng minh.

18 tháng 8 2015

Đề có sai ko bạn

2 tháng 10 2017

t.i.c.k mik mik t.i.c.k lại

2 tháng 10 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{4}{2a+b+c}=\frac{4}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{a+b}+\frac{1}{a+c}\)

\(\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)\)

Tương tự cho 2 BĐT còn lại cũng có:

\(\frac{4}{2b+c+a}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\)\(;\frac{4}{2c+a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)+\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le\frac{1}{4}\left(4a+4b+4c\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=VP\)

Khi \(a=b=c\)

NV
28 tháng 4 2020

\(VT=\frac{a}{a+b+a+c}+\frac{b}{a+b+b+c}+\frac{c}{a+c+b+c}\)

\(VT\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{c}{b+c}\right)=\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c\)

30 tháng 4 2020

Ta có: 

\(\frac{a}{2a+b+c}=\frac{a}{\left(a+b\right)\left(a+c\right)}\le\frac{a}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

\(\frac{b}{a+2b+c}=\frac{b}{\left(a+b\right)\left(b+c\right)}\le\frac{b}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)

\(\frac{c}{a+b+2c}=\frac{c}{\left(a+c\right)\left(b+c\right)}\le\frac{c}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)

Cộng  vế theo vế:

=> \(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\le\frac{1}{4}\left(1+1+1\right)=\frac{3}{4}\)

Dấu "=" xảy ra <=> a = b = c

30 tháng 4 2020

Cách 1:

Biến đổi tương đương bất đẳng thức cần chứng minh

\(1-\frac{a}{2b+b+c}+1-\frac{b}{a+2b+c}+1-\frac{c}{a+b+2c}\ge\frac{9}{4}\)

\(\Leftrightarrow\frac{a+b+c}{2a+b+c}+\frac{a+b+c}{a+2b+c}+\frac{a+b+c}{a+b+2c}\ge\frac{9}{4}\)

\(\Leftrightarrow4\left(a+b+c\right)\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\ge9\)

Đặt x=2a+b+c; y=a+2b+c; z=a+b+2c => x+y+z=4(a+b+c)

Khi đó đẳng thức trên trở thành

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)

\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-2\right)+\left(\frac{y}{z}+\frac{z}{y}-2\right)+\left(\frac{x}{z}+\frac{z}{x}-2\right)\ge0\)

\(\Leftrightarrow\frac{\left(x-y\right)^2}{2xy}+\frac{\left(y-z\right)^2}{2yz}+\frac{\left(z-x\right)^2}{2xz}\ge0\)

BĐT cuối luôn đúng

Vậy BĐT được chứng minh. Dấu "=" xảy ra <=> a=b=c

Cách 2:

Đặt x=2a+b+c; y=a+2b+c; z=a+b+2c

=> \(\hept{\begin{cases}a=\frac{2x-y-z}{4}\\b=\frac{3y-x-z}{4}\\c=\frac{3z-x-y}{4}\end{cases}}\)

BĐT cần chứng minh được viết lại thành

\(\frac{3x-y-z}{4x}+\frac{3y-x-z}{4y}+\frac{3z-x-z}{4z}\le\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{4}\left(\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{z}{x}\right)\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{z}{x}\ge6\)

\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-2\right)+\left(\frac{y}{z}+\frac{z}{y}-2\right)+\left(\frac{x}{z}+\frac{z}{x}-2\right)\ge0\)

\(\Leftrightarrow\frac{\left(x-y\right)^2}{2xy}+\frac{\left(y-z\right)^2}{2yz}+\frac{\left(z-x\right)^2}{2zx}\ge0\)

BĐT cuối luôn đúng

Vậy BĐT được chứng minh. Dấu "=" <=> a=b=c

29 tháng 6 2016

\(a^3-a^2b+ab^2-6b^3=0\)

\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)

Vì a>b>0 =>a2+ab+3b2>0 nên từ (1) ta có a=2b

Vậy biểu thức \(A=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)

2 tháng 3 2021
Không làm mà đòi có ăn thì chỉ ăn cứt ăn đâù buồi