Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}=4\)
\(\Rightarrow\left\{{}\begin{matrix}a=4a'\\b=4b'\\c=4c'\end{matrix}\right.\)
\(\Rightarrow\dfrac{a+b+c}{a'+b'+c'}=\dfrac{4a'+4b'+4c'}{a'+b'+c'}\)\(=\dfrac{4\left(a'+b'+c'\right)}{a'+b'+c'}=4\)
b)\(\Rightarrow\dfrac{a-3b+2c}{a'-3b'+2c'}=\dfrac{4a'-3\cdot4b'+2\cdot4c'}{a'-3b'+2c'}\)\(=\dfrac{4a'-12b'+8c'}{a'-3b'+2c'}\)\(=\dfrac{4\left(a'-3b'+2c'\right)}{a'-3b'+2c'}=4\)
Câu 3:
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)
=>\(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{3}\) = \(\dfrac{b}{4}\) = \(\dfrac{c}{5}\) =>\(\dfrac{2a}{6}\) = \(\dfrac{3b}{12}\) = \(\dfrac{c}{5}\) => \(\dfrac{2a+3b-c}{6+12-5}\) = \(\dfrac{39}{13}\) = 3
=>a = 3.3 = 9
b = 4.3 = 12
c = 5.3 = 15
Vậy a = 9;b = 12;c = 15
ta có 2a = 3b = 4c \(\Leftrightarrow\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\) ( chia cả 3 cho 12 )
\(\frac{a+b+c}{6+4+3}=\frac{39}{13}=3\) ( theo dãy tỉ số bằng nhau)
\(\frac{a}{6}=3\Rightarrow a=18\)
\(\frac{b}{4}=3\Rightarrow b=12\)
\(\frac{c}{3}=3\Rightarrow c=9\)
có chỗ nào ko hiểu thì bn gửi thư hỏi mình nhá
Lời giải:
Ta có \(`\left\{\begin{matrix} \frac{a}{a'}+\frac{b'}{b}=1\\ \frac{b}{b'}+\frac{c'}{c}=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} ab+a'b'=a'b\\ bc+b'c'=b'c\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} ab=a'b-a'b'\\ b'c'=b'c-bc\end{matrix}\right.\Rightarrow \left\{\begin{matrix} abc=a'bc-a'b'c\\ a'b'c'=a'b'c-a'bc\end{matrix}\right.\)
\(\Rightarrow abc+a'b'c'=0\)
Do đó ta có đpcm.
a: Xét ΔBAC và ΔB'A'C có
BC=B'C
\(\widehat{BCA}=\widehat{B'CA'}\)
CA=CA'
Do đó: ΔBAC=ΔB'A'C
Suy ra: \(\widehat{ABC}=\widehat{A'B'C}\)
Xét ΔABC và ΔA'B'C' có
AB=A'B'
AC=A'C'
BC=B'C'
Do đó: ΔABC=ΔA'B'C'
a) Xét 2 \(\Delta\) \(ABC\) và \(A'B'C'\) có:
\(AB=A'B'\left(gt\right)\)
\(\widehat{A}=\widehat{A'}\left(gt\right)\)
\(AC=A'C'\left(gt\right)\)
=> \(\Delta ABC=\Delta A'B'C'\left(c-g-c\right).\)
b) Xét 2 \(\Delta\) \(AMC\) và \(A'M'C'\) có:
\(AM=A'M'\left(gt\right)\)
\(\widehat{A}=\widehat{A'}\left(gt\right)\)
\(AC=A'C'\left(gt\right)\)
=> \(\Delta AMC=\Delta A'M'C'\left(c-g-c\right).\)
=> \(\widehat{AMC}=\widehat{A'M'C'}\) (2 góc tương ứng)
c) Ta có:
\(\left\{{}\begin{matrix}A'M'+B'M'=A'B'\\AM+BM=AB\end{matrix}\right.\)
Mà \(AM=A'M'\left(gt\right),AB=A'B'\left(gt\right)\)
=> \(BM=B'M'.\)
d) Vì \(\Delta ABC=\Delta A'B'C'\left(cmt\right)\)
=> \(\widehat{B}=\widehat{B'}\) (2 góc tương ứng)
Xét 2 \(\Delta\) \(MBE\) và \(M'B'E'\) có:
\(MB=M'B'\left(cmt\right)\)
\(\widehat{B}=\widehat{B'}\left(cmt\right)\)
\(BE=B'E'\left(gt\right)\)
=> \(\Delta MBE=\Delta M'B'E'\left(c-g-c\right).\)
=> \(ME=M'E'\) (2 cạnh tương ứng) (đpcm).
Chúc bạn học tốt!
Ta có:
\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=4\Rightarrow\left\{{}\begin{matrix}a=4a'\\b=4b'\\c=4c'\end{matrix}\right.\)
\(\Rightarrow\frac{a-3b+2c}{a'-3b'+2c'}=\frac{4a'-3.4b'+2.4c'}{a'-3b'+2c'}=\frac{4\left(a'-3b'+2c'\right)}{a'-3b'+2c'}=4\)
chắc chắn đúng ko bạn