Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=7+7^2+7^3+...+7^{120}\\ A=\left(7+7^2+7^3\right)+...+\left(7^{118}+7^{119}+7^{120}\right)\\ A=7\times\left(1+7+7^2\right)+...+7^{118}\times\left(1+7+7^2\right)\\ A=7\times57+7^4\times57+...+7^{118}\times57\\ A=57\times\left(7+7^4+...+7^{118}\right)\\ \Rightarrow A⋮57\)
\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)=7.57+7^4.57+...+7^{118}.57=57\left(7+7^4+...+7^{118}\right)⋮57\)
Lời giải:
$A=(7+7^2+7^3)+(7^4+7^5+7^6)+....+(7^{118}+7^{119}+7^{120})$
$=7(1+7+7^2)+7^4(1+7+7^2)+...+7^{118}(1+7+7^2)$
$=7.57+7^4.57+...+7^{118}.57$
$=57(7+7^4+...+7^{118})\vdots 57$
Ta có đpcm.
Ta xét biểu thức \(A_1=7+7^2+7^3\) \(=7\left(1+7+7^2\right)\) \(=57.7⋮57\)
\(A_2=7^4+7^5+7^6\) \(=7^4\left(1+7+7^2\right)\) \(=57.7^4⋮57\)
...
\(A_{40}=7^{118}+7^{119}+7^{120}\) \(=7^{118}\left(1+7+7^2\right)⋮57\)
Vậy \(A=\sum\limits^{40}_{i=1}A_i\) đương nhiên chia hết cho 57 (đpcm)
M = 7 + 72 + 73 + 74 + ..... + 7100
M = 7+(1+7)+73+(1+7)+...+799+(1+7)
M = 7x8+73x8+...+799x8
M = 8x(7+73+...+799)
mà 8 chia hết 8 => 8(7+73+...+799) chia hết 8
Vậy M chia hết cho 8
Để chứng minh S chia hết cho 2 và S chia hết cho 57, ta sẽ xem xét từng thành phần trong công thức của S.
Đầu tiên, ta xét dãy từ 71 đến 72025. Trong dãy này, có 72025 - 71 + 1 = 71955 số.
Ta biết rằng nếu một số chia hết cho 2, thì số đó là số chẵn. Trong dãy từ 71 đến 72025, ta có 2 số lẻ liên tiếp (71 và 72), sau đó là 2 số chẵn liên tiếp (73 và 74), và tiếp tục lặp lại quy luật này. Vì vậy, trong 71955 số này, ta có 71955/2 = 35977.5 cặp số chẵn và lẻ.
Do đó, tổng của các số chẵn trong dãy này là 35977.5 * 2 = 71955.
Tiếp theo, ta xét số 72024. Ta biết rằng 72024 chia hết cho 2.
Cuối cùng, ta xét số 72025. Ta biết rằng 72025 chia hết cho 57, vì 72025 = 57 * 1265.
Vậy tổng S chia hết cho 2 và chia hết cho 57.
\(A=7+7^2+7^3+...+7^7+7^8\)
a) Lũy thừa với cơ số 7 có chữ số tận cùng là số lẻ
Mà A có 8 số hạng
Nên a là số chẵn (vì có 8 số có chữ số tận cùng là chữ số lẻ cộng lại)
b) Các chữ số tận cùng của 8 số hạng trên lần lượt là:
7; 9; 3; 1; 7; 9; 3; 1
\(\Rightarrow A\) có chữ số tận cùng là 0
\(\Rightarrow A⋮5\)
Cách 2:
a) Ta có:
\(A=7+7^2+7^3+...+7^7+7^8\) \(=6725600\) có chữ số tận cùng là 0 nên A là số chẵn
b) Do A có chữ số tận cùng là 0 nên A chia hết cho 5
\(S=7+7^2+7^3+...7^{20}\)
Ta có: \(7S=7.\left(7+7^2+7^3+...+7^{20}\right)\)
\(7S=7^2+7^3+7^4+...+7^{21}\)
\(7S-S=\left(7^2+7^3+7^4+...+7^{21}\right)-\left(7+7^2+7^3+...+7^{20}\right)\)
\(6S=\left(7^{21}-7\right)\)
\(S=\left(7^{21}-7\right):6\)
Chúc bạn học tốt