Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
+) \(\left(2n^2+n+2\right)^2=4n^4+4n^3+9n^2+4n+4>4n^4+4n^3+6n^2+3n+2\)
Giải thích: \(3n^2+n+2>0\forall n\inℤ\)
+)\(4n^4+4n^3+6n^2+3n+2>4n^4+4n^3+5n^2+2n+1=\left(2n^2+n+1\right)^2\)
Giải thích: \(n^2+n+1>0\forall n\inℤ\)
Ta thấy \(4n^4+4n^3+6n^2+3n+2\)bị kẹp giữa 2 số chính phương liên tiếp nên không thể là số chính phương
làm sao bạn tìm ra hai bình phương kẹp A ở giữa thế bạn, chỉ mik với?
Bài 1:
a ) Ta có : A là tổng các số hạng chia hết cho 3 => A \(⋮\)3
A có 3 không chia hết cho 9 => A không chia hết cho 9
=> A \(⋮\)3 nhưng không chia hết cho 9
=> A không phải là số chính phương
Bài 2:
Gọi 2 số lẻ có dạng 2k+1 và 2q+1 (k,q thuộc N)
Có : A = (2k+1)^2+(2q+1)^2
= 4k^2+4k+1+4q^2+4q+1
= 4.(k^2+k+q^2+q)+2
Ta thấy A chia hết cho 2 nguyên tố
Lại có : 4.(q^2+q+k^2+k) chia hết cho 4 mà 2 ko chia hết cho 4 => A ko chia hết cho 4
=> A chia hết cho 2 nguyên tố mà A ko chia hết cho 4 = 2^2
=> A ko là số chính phương
=> ĐPCM
Ta có: \(A=n^2+4n+3\)
\(A=n^2+n+3n+3\)
\(A=\left(n^2+n\right)+\left(3n+3\right)\)
\(A=n\left(n+1\right)+3\left(n+1\right)\)
\(A=\left(n+1\right)\left(n+3\right)\)
Vì A là tích của hai số chẵn hoặc hai số lẻ liên tiếp
Vậy A không phải là số chính phương
(n+1)2 <A<(n+2)2
Do giữa 2 số a2 và (a+1)2 không có số chính phương nào
Nên A không phải số chính phương
Lời giải:
Câu 1)
Ta có: \(A_n=n^3+3n^2-n-3=n^2(n+3)-(n+3)\)
\(A_n=(n^2-1)(n+3)=(n-1)(n+1)(n+3)\)
Do $n$ lẻ nên đặt \(n=2k+1\)
\(A_n=(n-1)(n+1)(n+3)=2k(2k+2)(2k+4)\)
\(A_n=8k(k+1)(k+2)\)
Do \(k,k+1,k+2\) là ba số tự nhiên liên tiếp nên tích của chúng chia hết cho $3$
\(\Rightarrow A_n=8k(k+1)(k+2)\vdots 3(1)\)
Mặt khác \(k,k+1\) là hai số tự nhiên liên tiếp nên \(k(k+1)\vdots 2\)
\(\Rightarrow A_n=8k(k+1)(k+2)\vdots (8.2=16)(2)\)
Từ \((1); (2)\) kết hợp với \((3,16)\) nguyên tố cùng nhau nên
\(A_n\vdots (16.3)\Leftrightarrow A_n\vdots 48\)
Ta có đpcm.
Bài 2:
\(A_n=2n^3+3n^2+n=n(2n^2+3n+1)\)
\(A_n=n[2n(n+1)+(n+1)]=n(n+1)(2n+1)\)
Vì \(n,n+1\) là hai số nguyên liên tiếp nên \(n(n+1)\vdots 2\)
\(\Rightarrow A_n\vdots 2(1)\)
Bây giờ, xét các TH sau:
TH1: \(n=3k\Rightarrow A_n=3k(n+1)(2n+1)\vdots 3\)
TH2: \(n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3\)
\(\Rightarrow A_n=n(n+1)(2n+1)\vdots 3\)
TH3: \(n=3k+2\Rightarrow n+1=3k+3=3(k+1)\vdots 3\)
\(\Rightarrow A_n=n(n+1)(2n+1)\vdots 3\)
Vậy trong mọi TH thì \(A_n\vdots 3(2)\)
Từ (1); (2) kết hợp với (2,3) nguyên tố cùng nhau suy ra \(A_n\vdots 6\)
Ta có đpcm.
a,2^4n+1 có chữ số tận cùng luôn là 2 Do đó 2^4n+1 +3 chia hết cho 5 b,7^4n _____________________1_____7^4n -1 luôn __________5
b)
a=3n+1+3n-1=3n(3+1)-1=3n*4-1
Để a chia hết cho 7 thì aEB(7)={1;7;14;28;35;...}
=>{3n*4}E{2;8;15;29;36;...}
=>3nE{9;...} => nE{3;...}
b=2*3n+1-3n+1=3n*(6-1)+1=3n*5+1
Để b chia hết cho 7 thì bEB(7)={1;7;14;28;35;...}
=>{3N*5}E{0;6;13;27;34;...}
=>3NE{0;...}
=>NE{0;...}
=>đpcm(cj ko chắc cách cm này)