Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
a=3n+1+3n-1=3n(3+1)-1=3n*4-1
Để a chia hết cho 7 thì aEB(7)={1;7;14;28;35;...}
=>{3n*4}E{2;8;15;29;36;...}
=>3nE{9;...} => nE{3;...}
b=2*3n+1-3n+1=3n*(6-1)+1=3n*5+1
Để b chia hết cho 7 thì bEB(7)={1;7;14;28;35;...}
=>{3N*5}E{0;6;13;27;34;...}
=>3NE{0;...}
=>NE{0;...}
=>đpcm(cj ko chắc cách cm này)
ta có:
B-A=7n+1+3(n+1)-1-7n-3n+1
=7n+1+3n+3-1-7n-3n+1
=7n+1-7n+3
=7n.6+3
lại có:
3A=3.7n+9n-3
=>B-A+3A=B+2A=7n.6+3+7n.3+9m-3
=9.7n+9n chia hết cho 9
mà 2A chia hết cho 9
=>B chia hết cho 9
=>đpcm
b)Để N có giá trị nguyên thì căn x-5 EƯ(9)={1;-1;3;-3;9;-9}
=>căn x E{6;4;8;2;14;-4}
=>xE{36;24;64;4;196;16}
Vậy để N có giá trị nguyên thì x E{36;24;64;4;196;16}
a) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)
\(=\left[3^n.\left(3^2+1\right)\right]-\left[2^n.\left(2^2+1\right)\right]=\left(3^n.10\right)-\left(2^{n-1}.2.5\right)=\left(3^n.10\right)-\left(2^{n-1}.10\right)\)
Do: 3n . 10 chia hết cho 10 và 2n - 1 . 10 chia hết cho 10
=> ( 3n . 10 ) - ( 2n - 1 . 10 ) chia hết cho 10 => 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10
1/ \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{10}\)
\(\Rightarrow2017\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2017\cdot\frac{1}{10}\)
\(\Rightarrow\frac{2017}{a+b}+\frac{2017}{b+c}+\frac{2017}{c+a}=201,7\)
\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=201,7\) (vì a + b + c = 2017)
\(\Rightarrow\left(\frac{c}{a+b}+1\right)+\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)=201,7\)
\(\Rightarrow M=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3=201,7\)
\(\Rightarrow M=198,7\)
2/
a, 3n+2 - 2n+2 + 3n + 2n
= 3n.32 + 3n - 2n.22 + 2n
= 3n.10 - 2n.5
= 3n.10 - 2n-1.10
= 10(3n - 2n-1 ) ⋮ 10
1
Lời giải:
Câu 1)
Ta có: \(A_n=n^3+3n^2-n-3=n^2(n+3)-(n+3)\)
\(A_n=(n^2-1)(n+3)=(n-1)(n+1)(n+3)\)
Do $n$ lẻ nên đặt \(n=2k+1\)
\(A_n=(n-1)(n+1)(n+3)=2k(2k+2)(2k+4)\)
\(A_n=8k(k+1)(k+2)\)
Do \(k,k+1,k+2\) là ba số tự nhiên liên tiếp nên tích của chúng chia hết cho $3$
\(\Rightarrow A_n=8k(k+1)(k+2)\vdots 3(1)\)
Mặt khác \(k,k+1\) là hai số tự nhiên liên tiếp nên \(k(k+1)\vdots 2\)
\(\Rightarrow A_n=8k(k+1)(k+2)\vdots (8.2=16)(2)\)
Từ \((1); (2)\) kết hợp với \((3,16)\) nguyên tố cùng nhau nên
\(A_n\vdots (16.3)\Leftrightarrow A_n\vdots 48\)
Ta có đpcm.
Bài 2:
\(A_n=2n^3+3n^2+n=n(2n^2+3n+1)\)
\(A_n=n[2n(n+1)+(n+1)]=n(n+1)(2n+1)\)
Vì \(n,n+1\) là hai số nguyên liên tiếp nên \(n(n+1)\vdots 2\)
\(\Rightarrow A_n\vdots 2(1)\)
Bây giờ, xét các TH sau:
TH1: \(n=3k\Rightarrow A_n=3k(n+1)(2n+1)\vdots 3\)
TH2: \(n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3\)
\(\Rightarrow A_n=n(n+1)(2n+1)\vdots 3\)
TH3: \(n=3k+2\Rightarrow n+1=3k+3=3(k+1)\vdots 3\)
\(\Rightarrow A_n=n(n+1)(2n+1)\vdots 3\)
Vậy trong mọi TH thì \(A_n\vdots 3(2)\)
Từ (1); (2) kết hợp với (2,3) nguyên tố cùng nhau suy ra \(A_n\vdots 6\)
Ta có đpcm.