Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=4+42+...+451
=4(1+4)+...+450(1+4)
=4*5+...+450*5
=(4+...+450)*5
Vì 5 chia hết cho 5 nên (4+...+450)*5 chia hết cho 5 hay A chia hết cho 5
Vậy A chia hết cho 5
a) A = 2 + 22 + 23 + 24 + ...+ 220 ( có 20 số hạng)
A = (2+22) + (23 + 24) + ...+ (219 + 220) ( có 10 nhóm số hạng)
A = 2.(1+2) + 23.(1+2) + ...+ 219.(1+2)
A = 2.3 + 23.3 + ...+ 219.3
A = 3.(2+23+...+219) chia hết cho 3
các phần còn lại bn dựa vào mak lm]\
Ta có:4+2^2+2^3+2^4+2^5+2^6=128
Suy ra ta sẽ lập đc 3bnhóm mỗi nhóm 6 số để chia hết ch0 128 và thừa 2^19;2^20
2^19+2^20=1572864 chia het cho128
A chia het cho 128
đặt A=....................................................
Ta có A=2+2^2+2^3+2^4+...+2^10 = 2(1+2) + 2^3(1+2)+...+2^9(1+2) = 3*2 + 3*2^3 + ...+ 3* 2^9 = 3(2+..+2^9)
do 2+..+2^9 thuộc N nên A chia hết cho 3
có:4+22+...+26=128,còn mấy cái sau cái nào cũng chia hết cho 128.
Suy ra A chia hết cho 128
Phân tích 128 ra những thừa số nguyên tố cùng nhau, nếu A chia hết cho các thừa số đó thì A chia hết cho 128.
A = \(4+2^2+2^3+2^4+...+2^{20}\)
\(\Leftrightarrow A=2^2+2^2+2^3+2^4+...+2^{20}\)
\(\Leftrightarrow2A=2^3+2^3+2^4+2^5+...+2^{21}\)
\(\Leftrightarrow2A-A=2^3+2^{21}-2^2-2^2\)
\(\Leftrightarrow A=8+\left(2^7\right)^3-4-4\)
\(\Leftrightarrow A=128^3+\left(8-4-4\right)\)
\(\Leftrightarrow A=128^3\)
\(\Leftrightarrow A⋮128\)
Vậy A có chia hết cho 128
@@ Học tốt
Chiyuki Fujito
\(A=4+2^2+2^3+2^4+...+2^{20}\)
\(\Leftrightarrow A=2^2+2^2+2^3+2^4+...+2^{20}\)
\(\Leftrightarrow2A=2^3+2^3+2^4+2^5+...+2^{21}\)
\(\Leftrightarrow2A-A=2^3+2^{21}-2^2-2^2\)
\(\Leftrightarrow A=8+\left(2^7\right)^3-4-4\)
\(\Leftrightarrow A=128^3+\left(8-4-4\right)\)
\(\Leftrightarrow A=128^3⋮128\)
=>A chia hết cho 128
2A=8+23+24+25+...+221
2A-A=221+8-(4+22)
A=221
A=(27)3
A=1283
Vậy A chia hết cho 128 ( đpcm)