K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

\(\Rightarrow4A=4+4^2+4^3+...+4^{100}\\ \Rightarrow4A-A=\left(4+4^2+4^3+...+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\\ \Rightarrow3A=4^{100}-1< 4^{100}=B\\ \Rightarrow A< \dfrac{B}{3}\)

3 tháng 6 2019

#)Giải :

a) Đặt A = 29 + 299 = 29 + ( 211)

A = ( 2 + 211)( 2- 27 x 211 + ... - 2 x 277 + 288)

Nhân tử thứ nhất 2 + 211 = 2050

Nhân tử thứ hai là một số chẵn = 2A ( vì là tổng hiệu của các bội của 2 ) 

=> A = 2050 x 2A = 4100 x A => A chia hết cho 100

3 tháng 6 2019

#)Giải :

b) A = 3638+4143

A = 3633 . 365 + 4133

A = 3633 . 365 + 3633 - 3633 + 4133

A = 3633 ( 365 + 1 ) - (3633 - 4133)

A = 77.Q1 - 77.Q2

=> A chia hết cho 77

             #~Will~be~Pens~#

8 tháng 8 2020

Ta có :

\(43^4+43^5\)

\(=43^4\left(1+43\right)\)

\(=43^4.44⋮44\)

Vậy \(43^4+43^5⋮44\).

Học tốt

\(43^4+43^5\)

\(=43^4\left(1+43\right)\)

\(=43^4.44⋮44\)

\(\Rightarrow\)\(43^4+43^5⋮44\)

8 tháng 8 2020

Bài làm:

Ta có: \(43^4+43^5\)

\(=43^4\left(1+43\right)\)

\(=43^4.44⋮44\)

=> đpcm

8 tháng 8 2020

Ta có : 434 + 435 = 434(1 + 43) = 434.44 \(⋮\)44

=> 434 + 435 \(⋮\)44 (đpcm)

27 tháng 6 2017

\(=7^{39}\left(1+7+7^2+7^3\right)=7^{39}\left[\left(1+7^2\right)+7\left(1+7^2\right)\right].\)

\(=7^{39}\left(50+7.50\right)=7^{39}.50.\left(1+7\right)=7^{39}.400\)chia hết cho 20

AH
Akai Haruma
Giáo viên
29 tháng 3 2020

Lời giải:

Ký hiệu $\text{BSn}$ là bội số của số $n$

CM $A\vdots 7$

Ta có:

$36^{38}-1=(35+1)^38}-1=\text{BS35}+1-1=\text{BS35}=\text{BS7}\vdots 7$

$41^{43}+1=(42-1)^{43}+1=\text{BS42}-1+1=\text{BS42}=\text{BS7}\vdots 7$

Cộng theo vế:

$A=36^{38}+41^{43}\vdots 7(*)$

CM $A\vdots 11$

\(36^{38}-3^{38}=(33+3)^{38}-3^{38}=\text{BS33}+3^{38}-3^{38}=\text{BS33}=\text{BS11}\vdots 11\)

\(41^{43}+3^{43}=(44-3)^{43}+3^{43}=\text{BS44}-3^{43}+3^{43}=\text{BS44}=\text{BS11}\vdots 11\)

Cộng theo vế:

\(A+3^{43}-3^{38}\vdots 11\)

\(\Leftrightarrow A+3^{38}(3^5-1)\vdots 11\Leftrightarrow A+242.3^{38}\vdots 11\)

Mà $242.3^{38}=11.22.3^{38}\vdots 11$ nên $A\vdots 11(**)$

Từ $(*); (**)$ mà $(7,11)=1$ nên $A\vdots 77$ (đpcm)

29 tháng 3 2020

36^38+41^33
= 36^33 . 36^5 + 41^33
= 36^33 . 36^5 + 36^33 - 36^33 + 41^33
= 36^33(36^5+ 1) - (36^33 - 41^33)
= 77.Q1 - 77.Q2
=> chia hết cho 77