![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
c)D=4+42+43+44+...+42012
D=(4+42)+(43+44)+...+(42011+42012)
D=4.5+43.5+45.5+...+42011.5
D=5.(4+43+42011)
=>D chia hết cho 5
=>ĐPCM
![](https://rs.olm.vn/images/avt/0.png?1311)
a = 3 + 32 + 33 +...+32016
a = ( 3 + 32 ) + ( 33 + 34 ) +...+ ( 32015 + 32016 )
a = 3.( 1 + 3 ) + 33.( 1 + 3 ) +...+ 32015.( 1 + 3 )
a = 3.4 + 33.4 +...+ 32015.4
a = 4.( 3 + 33 +...+ 32015 ) \(⋮\)4
Vậy a chia hết cho 4.
a = 3 + 32 + 33 +...+ 32016
a = ( 3 + 32 + 33 ) + ( 34 + 35 + 36 ) +...+ ( 32014 + 32015 + 32016 )
a = 3.( 1 + 3 + 32 ) + 34.( 1 + 3 + 32 ) +...+ 32014.( 1 + 3 + 32 )
a = 3.13 + 34.13 +...+ 32014.13
a = 13.( 1 + 34 +...+ 32014 ) \(⋮\)13
Vậy a chia hết cho 13.
- chứng minh A chia hết cho 4 trước nha
ta có
A = 3 + 32 + 33 + ... + 32016
A = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 32015 + 32016 )
A = 3 . ( 1 + 3 ) + 33 . ( 1 + 3 ) + ... + 32015 . ( 1 + 3 )
A = 3 . 4 + 33 . 4 + ... + 32015 . 4
A = 4 . ( 3 + 33 + ... + 32015 ) ( vì 4 chia hết cho 4 )
=> A chia hết cho 4
- giờ mấy đến A chia hết cho 13
ta có
A = 3 + 32 + 33 + ... + 32016
A = ( 3 + 32 + 33 ) + ( 34 + 35 + 36 ) + ... + ( 32014 + 32015 + 32016 )
A = 3 . ( 1+ 3 + 32 ) + 34 . ( 1 + 3 + 32 ) + ... + 32014 . ( 1 + 3 + 32 )
A = 3 . 13 + 34 . 13 + ... + 32014 . 13
A = 13 . ( 3 + 34 + ... + 42014 ) ( Vì 13 chia hết cho 13 )
=> A chia hết cho 13
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\left(3+3^2+3^3+3^4\right)+3^4\left(3+3^2+3^3+3^4\right)+...+3^{2008}\left(3+3^2+3^3+3^4\right)\)
\(=120+3^4.120+...+3^{2008}.120=120\left(1+3^4+...+3^{2008}\right)⋮120\)
\(A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(A=\left(3+3^2+3^3+3^4\right)+...+3^{2008}\left(3+3^2+3^3+3^4\right)\)
\(A=\left(3+3^2+3^3+3^4\right)\left(1+3^4+...+3^{2008}\right)\)
\(A=120\left(1+3^4+...+3^{2008}\right)⋮120\)
![](https://rs.olm.vn/images/avt/0.png?1311)
TA có 2^2015 có tận cùng là 8 nên 2012^2015 có tận cùng là 8 và 7^2012^2015 có tận cùng là 1
2^91 có tận cùng 8 nên 92^91 có tận cùng là 8 và 3^92^91 có tận cùng là 1
1/2A sẽ có tận cùng là 1-1=0
A sẽ có tận cùng là 5 hoặc 0
Vậy a chia hết cho 5
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(A=3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=3.40+3^5.40+...+3^{2009}.40\)
\(=120+3^4.120+...+3^{2008}.120\)
\(=120\left(1+3^4+...+3^{2008}\right)\)
Vì \(120⋮120\) nên \(120\left(1+3^4+...+3^{2008}\right)⋮120\)
hay \(A⋮120\) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
= 3+3x3x3+3x3x3x3x3+..........+3x......x3
(vì các tích trên đều chứa thừa số 3 nên tích này chia hết cho 3)
\(\Rightarrow\) A chia hết cho 3
![](https://rs.olm.vn/images/avt/0.png?1311)
a) A luôn chia hết cho 3
A = (3 + 32) + (33 + 34) + ...+ (31997 + 31998) = 3.(1 + 3) + 33.(1 + 3) + ...+ 31997.(1 + 3) = 4.(3 + 33 + ...+ 31997)
=> A chia hết cho 4 ; A chia hết cho 3 => A chia hết cho 12
A = (3 + 32 + 33) + ...+ (31996 + 31997 + 31998) = 3.(1 + 3 + 32) + ...+ 31996.(1 + 3+ 32) = 13.(3 + 34 + ...+ 31996)
=> A chia hết cho 13. A chia hết cho 3 => A chia hết cho 39
b) A = (3 + 32 + 33 + 34) + ..+ (3997 + 3998 + 3999 + 31000)
A = 3.(1 + 3 + 32 + 33) + ...+ 3997.(1 + 3 + 32 + 33) = 40.(3 + ...+ 3997)
=> A chia hết cho 40 ; A chia hết cho 3
=> A chia hết cho 40.3 = 120
Vậy...
\(a)\) \(A=3+3^2+3^3+...+3^{2012}\)
\(3A=3^2+3^3+3^4+...+3^{2013}\)
\(3A-A=\left(3^2+3^3+3^4+...+3^{2013}\right)-\left(3+3^2+3^3+...+3^{2012}\right)\)
\(2A=3^{2013}-3\)
\(A=\frac{3^{2013}-3}{2}\)
Vậy \(A=\frac{3^{2013}-3}{2}\)
Chúc bạn học tốt ~
\(b)\) \(A=3+3^2+3^3+...+3^{2012}\)
\(A=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(A=\left(3+9+27+81\right)+3^4\left(3+9+27+81\right)+...+3^{2008}\left(3+9+27+81\right)\)
\(A=120+3^4.120+...+3^{2008}.120\)
\(A=120\left(1+3^4+...+3^{2008}\right)\)
Vì \(120⋮120\) nên \(120\left(1+3^4+...+3^{2008}\right)⋮120\)
Vậy \(A⋮120\)
Chúc bạn học tốt ~