![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a)\) \(A=3+3^2+3^3+...+3^{2012}\)
\(3A=3^2+3^3+3^4+...+3^{2013}\)
\(3A-A=\left(3^2+3^3+3^4+...+3^{2013}\right)-\left(3+3^2+3^3+...+3^{2012}\right)\)
\(2A=3^{2013}-3\)
\(A=\frac{3^{2013}-3}{2}\)
Vậy \(A=\frac{3^{2013}-3}{2}\)
Chúc bạn học tốt ~
\(b)\) \(A=3+3^2+3^3+...+3^{2012}\)
\(A=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(A=\left(3+9+27+81\right)+3^4\left(3+9+27+81\right)+...+3^{2008}\left(3+9+27+81\right)\)
\(A=120+3^4.120+...+3^{2008}.120\)
\(A=120\left(1+3^4+...+3^{2008}\right)\)
Vì \(120⋮120\) nên \(120\left(1+3^4+...+3^{2008}\right)⋮120\)
Vậy \(A⋮120\)
Chúc bạn học tốt ~
![](https://rs.olm.vn/images/avt/0.png?1311)
a = 3 + 32 + 33 +...+32016
a = ( 3 + 32 ) + ( 33 + 34 ) +...+ ( 32015 + 32016 )
a = 3.( 1 + 3 ) + 33.( 1 + 3 ) +...+ 32015.( 1 + 3 )
a = 3.4 + 33.4 +...+ 32015.4
a = 4.( 3 + 33 +...+ 32015 ) \(⋮\)4
Vậy a chia hết cho 4.
a = 3 + 32 + 33 +...+ 32016
a = ( 3 + 32 + 33 ) + ( 34 + 35 + 36 ) +...+ ( 32014 + 32015 + 32016 )
a = 3.( 1 + 3 + 32 ) + 34.( 1 + 3 + 32 ) +...+ 32014.( 1 + 3 + 32 )
a = 3.13 + 34.13 +...+ 32014.13
a = 13.( 1 + 34 +...+ 32014 ) \(⋮\)13
Vậy a chia hết cho 13.
- chứng minh A chia hết cho 4 trước nha
ta có
A = 3 + 32 + 33 + ... + 32016
A = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 32015 + 32016 )
A = 3 . ( 1 + 3 ) + 33 . ( 1 + 3 ) + ... + 32015 . ( 1 + 3 )
A = 3 . 4 + 33 . 4 + ... + 32015 . 4
A = 4 . ( 3 + 33 + ... + 32015 ) ( vì 4 chia hết cho 4 )
=> A chia hết cho 4
- giờ mấy đến A chia hết cho 13
ta có
A = 3 + 32 + 33 + ... + 32016
A = ( 3 + 32 + 33 ) + ( 34 + 35 + 36 ) + ... + ( 32014 + 32015 + 32016 )
A = 3 . ( 1+ 3 + 32 ) + 34 . ( 1 + 3 + 32 ) + ... + 32014 . ( 1 + 3 + 32 )
A = 3 . 13 + 34 . 13 + ... + 32014 . 13
A = 13 . ( 3 + 34 + ... + 42014 ) ( Vì 13 chia hết cho 13 )
=> A chia hết cho 13
![](https://rs.olm.vn/images/avt/0.png?1311)
TA có 2^2015 có tận cùng là 8 nên 2012^2015 có tận cùng là 8 và 7^2012^2015 có tận cùng là 1
2^91 có tận cùng 8 nên 92^91 có tận cùng là 8 và 3^92^91 có tận cùng là 1
1/2A sẽ có tận cùng là 1-1=0
A sẽ có tận cùng là 5 hoặc 0
Vậy a chia hết cho 5
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3
![](https://rs.olm.vn/images/avt/0.png?1311)
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lượm thôi ko biết có sai hay ko nữa:
a.
n(n + 5) - (n - 3)(n + 2)
= n2 + 5n - n2 - 2n + 3n + 6
= (n2 - n2) + (5n - 2n + 3n) + 6
= 6n + 6
= 6(n + 1)
Vậy n(n + 5) - (n - 3)(n + 2) chia hết cho 6.
b.
(n - 1)(n + 1) - (n - 7)(n - 5)
= n2 + n - n - 1 - n2 + 5n + 7n - 35
= (n2 - n2) + (n - n + 5n + 7n) - (1 + 35)
= 12n - 36
= 12(n - 3)
Vậy (n - 1)(n + 1) - (n - 7)(n - 5) chia hết cho 12.
= 3+3x3x3+3x3x3x3x3+..........+3x......x3
(vì các tích trên đều chứa thừa số 3 nên tích này chia hết cho 3)
\(\Rightarrow\) A chia hết cho 3