Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có
A = 3 + 32 + ... + 32004.
=> A = 3 ( 1+ 3 + 32 ) + 34 ( 1+ 3 + 32 ) + ... + 32001 ( 1+ 3 + 32 )
=> A = 3 . 13 + 34 . 13 + ... + 32001 . 13
=> A = 13 ( 3 + 34 + ... + 32001) chia hết cho 13.
Lại có :
A = 3 + 32 + ... + 32004.
=> A = ( 3 + 33) + (32 + 34) + ... + ( 32002 + 32004)
=> A = 3 ( 1+ 9) + 32 ( 1+ 9) + ... + 32003 ( 1+ 9)
=> A = 10 ( 3 + 32 + ... + 3 2003) chia hết cho 10.
Vậy A vừa chia hết cho 13 vừa chia hết cho 10 mà ( 13;10) = 1
=> A chia hết cho 130.
A=3+32+33+......+32004
3A=32+33+......+32005
3A-A= ( 32+33+......+32005 ) - ( 3+32+33+......+32004 )
2A=32005-3
A=\(\frac{3^{2005}-3}{2}\)
a) \(A=1+3+...+3^{50}\)
\(3A=3+3^2+...+3^{51}\)
\(3A-A=2A=3^{51}-1\Rightarrow A=\frac{3^{51}-1}{2}\)
B) \(A=\left(1+3+3^3\right)+\left(3^2+3^3+3^4\right)+....+\left(3^{48}+3^{49}+3^{50}\right)\)
\(=13+13\cdot3^2+...+13\cdot3^{48}\)
\(=13\left(1+3^2+...+3^{48}\right)⋮2\)
\(\Rightarrow A⋮3\)
C)\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5+3^6\right)+....+\left(3^{47}+3^{48}+3^{49}+3^{50}\right)\)
\(=13+3^3\cdot40+3^7\cdot40+...+3^{47}\cdot40\)
\(=13+40\left(3^3+3^7+...+3^{47}\right)\)
Vậy A chia cho 40 dư 13
d) theo câu C
\(40\left(3^3+3^7+...+3^{47}\right)=10\cdot4\cdot\left(3^3+...+3^{47}\right)\)
có tân cùng là 0
Mà + thêm 13 nên có tận cùng là 3
b) Ta có
A = 3 + 32 + ... + 32004.a)A=3+32+33+...+32004
=>3A=32+33+34+...+32005
=>3A-A=(32+33+34+...+32005)-(3+32+33+...+32004)
=>2A=32+33+34+...+32005-3-32-33-...-32004
=>2A=32005-3
=>A=32005−32