Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{101}{1}+\frac{100}{2}+\frac{99}{3}+...+\frac{1}{101}\)
\(A=\left(101-1-...-1\right)+\left(\frac{100}{2}+1\right)+\left(\frac{99}{3}+1\right)+...+\left(\frac{1}{101}+1\right)\)
\(A=\frac{102}{102}+\frac{102}{2}+\frac{102}{3}+...+\frac{102}{101}\)
\(A=102\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}+\frac{1}{102}\right)\)
\(\Rightarrow\)\(\frac{A}{B}=\frac{102\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}=\frac{102}{1}=102\)
Vậy \(\frac{A}{B}=102\)
Chúc bạn học tốt ~
a) \(2\cdot\left(1+2+2^2\right)=2\cdot7⋮7\left(đpcm\right)\)
b) \(3\cdot\left(1+3+3^2\right)=3\cdot13⋮13\left(đpcm\right)\)
Bài 1 : Chứng tỏ rằng :
a) 2 + 2^2 + 2^3
= 2 . 1 + 2^1 . 2^1 + 2^1 . 2^2
= 2 . 1 + 2 . 2 + 2 . 4
= 2 . ( 1 + 2 + 4 )
= 2 . 7 chia hết cho 7 .
Vậy 2 + 2^2 + 2^3 chia hết cho 7
b) 3^100 + 3^101 + 3^102
= 3^100 . 1 + 3^100 . 3^1 + 3^100 . 3^2
= 3^100 . 1 + 3^100 . 3 + 3^100 . 9
= 3^100 . ( 1 + 3 + 9 )
= 3^100 . ( 4 + 9 )
= 3^100 . 13 chia hết cho 13
Vậy 3^100 + 3^101 + 3^102 chia hết cho 13 .
Ta có :
\(D=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+......................+\dfrac{100}{3^{100}}+\dfrac{101}{3^{101}}\)
\(3D=1+\dfrac{2}{3}+\dfrac{3}{3^2}+.....................+\dfrac{100}{3^{99}}\)
\(3D-D=\left(1+\dfrac{2}{3}+\dfrac{3}{3^2}+...................+\dfrac{101}{3^{101}}\right)-\left(\dfrac{1}{3}+\dfrac{2}{3^2}+..............+\dfrac{100}{3^{99}}\right)\)\(2D=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...............+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)
\(6D=3+1+\dfrac{1}{3}+................+\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\)
\(6D-2D=\left(3+1+\dfrac{1}{3}+.............+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\right)-\left(1+\dfrac{1}{3}+..........+\dfrac{1}{3^{99}}-\dfrac{100}{3^{99}}\right)\)\(4D=3-\dfrac{100}{3^{99}}-\dfrac{1}{3^{99}}+\dfrac{100}{3^{100}}\)
\(4D=3-\dfrac{300}{3^{100}}-\dfrac{3}{3^{100}}+\dfrac{100}{3^{100}}\)
\(4D=3-\dfrac{203}{3^{100}}< 3\)
\(\Rightarrow D< \dfrac{3}{4}\rightarrowđpcm\)
~ Chúc bn học tốt ~
\(a,\frac{x+1}{65}+\frac{x+2}{64}=\frac{x+3}{63}+\frac{x+4}{62}\)
\(\Rightarrow\left[\frac{x+1}{65}+1\right]+\left[\frac{x+2}{64}+1\right]=\left[\frac{x+3}{63}+1\right]+\left[\frac{x+4}{62}+1\right]\)
\(\Rightarrow\frac{x+1+65}{65}+\frac{x+2+64}{64}=\frac{x+3+63}{63}+\frac{x+4+62}{62}\)
\(\Rightarrow\frac{x+66}{65}+\frac{x+66}{64}=\frac{x+66}{63}+\frac{x+66}{62}\)
\(\Rightarrow\frac{x+66}{65}+\frac{x+66}{64}=\frac{x+66}{63}+\frac{x+66}{62}=0\)
\(\Rightarrow\left[x+66\right]\left[\frac{1}{65}+\frac{1}{64}-\frac{1}{63}+\frac{1}{62}\right]=0\)
Mà \(\frac{1}{65}+\frac{1}{64}-\frac{1}{63}+\frac{1}{62}\ne0\)
\(\Rightarrow x+66=0\)
\(\Rightarrow x=0-66=-66\)
Auto làm nốt câu b
a, Cộng cả 2 vế với 2
Ta có \(\frac{x+1}{64}+\frac{x+2}{63}+2=\frac{x+3}{62}+\frac{x+4}{61}+2\)
\(\left(\frac{x+1}{64}+\frac{64}{64}\right)+\left(\frac{x+2}{63}+\frac{63}{63}\right)=\left(\frac{x+3}{62}+\frac{62}{62}\right)+\left(\frac{x+4}{61}+\frac{61}{61}\right)\)
=> \(\frac{x+65}{64}+\frac{x+65}{63}=\frac{x+65}{62}+\frac{x+65}{61}\)\(\)
=> \(\frac{x+65}{64}+\frac{x+65}{63}-\frac{x+65}{62}-\frac{x+65}{61}=0\)
=> \(\left(x+65\right)\left(\frac{1}{64}+\frac{1}{63}-\frac{1}{62}-\frac{1}{61}\right)=0\)
Do \(\frac{1}{64}+\frac{1}{63}-\frac{1}{62}-\frac{1}{61}\ne0\)=> \(x+65=0\)
=> \(x=-65\)
b , Lm tương tự như Câu a
Chúc bn hok tốt
Đặt là a, b nhá
\(a)\) \(7^{x-1}-2.7^{100}=5.7^{100}\)
\(\Leftrightarrow\)\(7^{x-1}=5.7^{100}+2.7^{100}\)
\(\Leftrightarrow\)\(7^{x-1}=7^{100}\left(5+2\right)\)
\(\Leftrightarrow\)\(7^{x-1}=7^{100}.7\)
\(\Leftrightarrow\)\(7^{x-1}=7^{101}\)
\(\Leftrightarrow\)\(x-1=101\)
\(\Leftrightarrow\)\(x=101+1\)
\(\Leftrightarrow\)\(x=102\)
Vậy \(x=102\)
\(b)\) \(5^{x-4}=25\)
\(\Leftrightarrow\)\(5^{x-4}=5^2\)
\(\Leftrightarrow\)\(x-4=2\)
\(\Leftrightarrow\)\(x=2+4\)
\(\Leftrightarrow\)\(x=6\)
Vậy \(x=6\)
Chúc bạn học tốt ~
\(7^{x-1}-2.7^{100}=5.7^{100}\)
\(\Rightarrow7^{x-1}=5.7^{100}+2.7^{100}\)
\(\Rightarrow7^{x-1}=7.7^{100}\)
\(\Rightarrow7^{x-1}=49^{100}\)
\(\Rightarrow7^{x-1}=7^{2^{100}}\)
\(\Rightarrow7^{x-1}=7^{200}\)
\(\Rightarrow x=201\)
Vậy x = 201
\(5^{x-4}=25\)
\(\Rightarrow5^{x-4}=5^2\)
\(\Rightarrow x=6\)
Vậy x = 6
\(\left(2^{100}.5+2^{100}.3\right):2^{101}\)
\(=2^{100}.8:2^{101}\)
\(=2^{100}.2^3:2^{101}\)
\(=2^{103}:2^{101}\)
\(=2^2\)
\(=4\)
\(3^5:3^3+2^2.2^3-14\)
\(=3^2+2^6-14\)
\(=9+64-14\)
\(=59\)
Bài 1:
C = 1/101 + 1/102 + 1/103 + ... + 1/200
Có:
C < 1/101 + 1/101 + 1/101 + ... + 1/101
C < 100 . 1/101
C < 100/101
Mà 100/101 < 1
=> C < 1 (1)
Có:
C > 1/200 + 1/200 + 1/200 + ... + 1/200
C > 100 . 1/200
C > 1/2 (2)
Từ (1) và (2)
=> 1/2<C<1
Ủng hộ nha mk làm tiếp