\(\frac{101}{1}\)+ \(\frac{100}{2}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

Ta có : 

\(A=\frac{101}{1}+\frac{100}{2}+\frac{99}{3}+...+\frac{1}{101}\)

\(A=\left(101-1-...-1\right)+\left(\frac{100}{2}+1\right)+\left(\frac{99}{3}+1\right)+...+\left(\frac{1}{101}+1\right)\)

\(A=\frac{102}{102}+\frac{102}{2}+\frac{102}{3}+...+\frac{102}{101}\)

\(A=102\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}+\frac{1}{102}\right)\)

\(\Rightarrow\)\(\frac{A}{B}=\frac{102\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}=\frac{102}{1}=102\)

Vậy \(\frac{A}{B}=102\)

Chúc bạn học tốt ~

4 tháng 3 2018

mình cần gấp nhé

27 tháng 4 2018

\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{101}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{102}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{101}+\frac{1}{102}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{102}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}+\frac{1}{102}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{51}\)

\(=\frac{1}{52}+\frac{1}{53}+\frac{1}{54}+...+\frac{1}{102}\)

\(=VP\)

25 tháng 4 2018

a) = 3/3 x ( -24/54 +45/54 ) : 7/12

   = 1 x 21/54 x 12/7

   = 18/27 

( hiện tại mik chỉ lm đc thế này thui. thông cảm nk )

a) \(\frac{53}{101}\cdot-\frac{13}{97}+\frac{53}{101}\cdot-\frac{84}{97}\)

\(=\frac{53}{101}\cdot\left(-\frac{13}{97}-\frac{84}{97}\right)\)

\(=\frac{53}{101}\cdot\left(-1\right)\)

\(=-\frac{53}{101}\)

25 tháng 4 2017

Ta có:

\(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}=\frac{100}{200}=\frac{1}{2}\)

\(\Rightarrow A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{2}\)