K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2018

2/

a, Có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2005^2}< \frac{1}{2004.2005}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2004.2005}=B\)

b, \(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2004.2005}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2004}-\frac{1}{2005}=1-\frac{1}{2005}< 1\)

3/ 

Ta có: \(\frac{1}{101}< \frac{1}{100};\frac{1}{102}< \frac{1}{100};...;\frac{1}{200}< \frac{1}{100}\)

\(\Rightarrow A< \frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\left(100ps\right)=\frac{1}{100}\cdot100=1\left(1\right)\)

Lại có: \(\frac{1}{101}>\frac{1}{200};\frac{1}{102}>\frac{1}{200};...;\frac{1}{200}=\frac{1}{200}\)

\(\Rightarrow A>\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\left(100ps\right)=\frac{1}{200}\cdot100=\frac{1}{2}\left(2\right)\)

Từ (1) và (2) => \(\frac{1}{2}< A< 1\)

20 tháng 3 2018

vận dụng 3 A nha bn

dễ mà

xong tìm A ok nha bn

ok

30 tháng 9 2021

cghsbbvb hs bsc x bvbddddddd c n  snsnfERGQHZ NAC nnnnNNNNNNNNNNNNNNNNNNNNNNNN nsn  v 

30 tháng 9 2021

tgrtyfdytiloniyu7d tadftr DxZhfhygd ỳdstAACA 

đặt \(A=\frac{1}{1.300}+\frac{1}{2.301}+...+\frac{1}{101.400}\)

\(\Rightarrow299A=\frac{299}{1.300}+\frac{299}{2.301}+...+\frac{299}{101.400}=1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+...+\frac{1}{101}-\frac{1}{400}\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)=C\)

\(\Rightarrow A=\frac{C}{299}\)

đặt \(B=\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+...+\frac{1}{299.400}\)

\(\Rightarrow101B=\frac{101}{1.102}+\frac{101}{2.103}+...+\frac{1}{299.400}=1-\frac{1}{102}+\frac{1}{2}-\frac{1}{103}+...+\frac{1}{299}-\frac{1}{400}\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{299}\right)-\left(\frac{1}{102}+\frac{1}{103}+...+\frac{1}{400}\right)=\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+...+\frac{1}{400}\right)=C\)

\(\Rightarrow B=\frac{C}{101}\)

bài toán được viết lại như sau:

\(\frac{C}{\frac{299}{\frac{C}{101}}}\)=\(\frac{101}{299}\)

4 tháng 7 2016

Sai rồi