K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2020

Ta có: a3 - b3 = 3ab  + 1

<=> a3 - b3 - 3ab - 1 = 0

<=> (a - b)(a2 + ab + b2) - 3ab - 1 = 0

<=> (a - b)3 + 3ab(a - b) - 3ab - 1 = 0

<=> (a - b - 1)(a2 - 2ab + b2 + a - b + 1) + 3ab(a - b - 1) = 0

<=> (a - b - 1)(a2 - 2ab + b2 + a - b+ 1 + 3ab) = 0

<=> (a - b - 1)(a2 + b2 + ab + a - b + 1) = 0

<=> \(\orbr{\begin{cases}a-b-1=0\left(1\right)\\a^2+b^2+ab+a-b+1=0\left(2\right)\end{cases}}\)

Giải: (1) a - b - 1 = 0 <=> a = 1 + b

Khi đó: a + b = 1 + b + b = 1 + 2b

Giải (2) a2 + b2 + ab + a - b + 1 = 0

<=> 2a2 + 2b2 + 2ab + 2a - 2b + 2 = 0

<=> (a2 + 2ab + b2) + (a2  + 2a + 1) + (b2 - 2b + 1) = 0

<=> (a + b)2 + (a + 1)2 + (b - 1)2 = 0

<=> \(\hept{\begin{cases}a+b=0\\a+1=0\\b-1=0\end{cases}}\) <=> a = -1 và b = 1

=> a + b = 0

20 tháng 7 2020

a,Ta có:a+b=1
<=>(a+b)^3=1^3
<=>a^3+3a^2.b+3a.b^2+b^3=1
<=>a^3+b^3+3ab(a+b)=1
mà a+b=1=>a^3+b^3+3ab=1=>a^3+b^3=1-3ab(dpcm)

b,Ta có a-b=1
<=>(a-b)^3=1^3
<=>a^3-3a^2b+3ab^2-b^3=1
<=>a^3-b^3-ab(a-b)=1
mà a-b=1=>a^3-b^3-3ab=1
=>a^3-b^3=1+3ab

16 tháng 8 2021

2

Ta có:

VP=(a+b)3−3ab(a+b)VP=(a+b)3-3ab(a+b)

     =a3+b3+3ab(a+b)−3ab(a+b)=a3+b3+3ab(a+b)-3ab(a+b)

     =a3+b3=VT(dpcm)

16 tháng 8 2021

1, \(VT=a^2+b^2=a^2+b^2+2ab-2ab=\left(a+b\right)^2-2ab=VP\left(đpcm\right)\)

28 tháng 6 2017

Biến đổi VP

=> VT = VP

=> Đpcm

21 tháng 5 2017

Theo mình: M=3

20 tháng 11 2020

\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+b^2+2ab\right)\)

\(=\left(a^2-ab+b^2\right)+3ab\left(a+b\right)^2\)

\(=a^2-ab+b^2+3ab\)

\(=a^2+2ab+b^2\)

\(=\left(a+b\right)^2=1\)

21 tháng 11 2018

a) HS tự chứng minh.

b) Áp dụng tính được:

i) 9261;                        ii) 7880599;         

iii) 5840;                      iv) 12140.

AH
Akai Haruma
Giáo viên
24 tháng 9 2021

Đề phải là CMR $a^3-b^3-3ab=1$ mới đúng bạn nhé.

Lời giải:

Vì $a-b=1$ nên:

$a^3-b^3-3ab=a^3-b^3-3ab(a-b)=a^3-3a^2b+3ab^2-b^3$

$=(a-b)^3=1^3=1$

Ta có đpcm.

21 tháng 10 2021

= a^3 + 3a^2.b + 3ab^2 + b3 − 3a^b − 3ab^2

= a^3 + b^3 = a3+b3=VT (Đpcm)

14 tháng 5 2021

a )

`VP= (a+b)^3-3ab(a+b)`

     `=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2`

     `=a^3+b^3 =VT (đpcm)`

b) 

b) Ta có

`VT=a3+b3+c3−3abc`

     `=(a+b)3−3ab(a+b)+c3−3abc`

     `=[(a+b)3+c3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)2+c2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a2+b2+2ab+c2−ac−bc−3ab)`

    `=(a+b+c)(a2+b2+c2−ab−bc−ca)=VP`

  
14 tháng 5 2021

 

a) Ta có:

`VP= (a+b)^3-3ab(a+b)`

     `=a^3 + b^3+3ab ( a + b )- 3ab ( a + b )`

     `=a^3 + b^3=VT(dpcm)`

b) Ta có

`VT=a^3+b^3+c^3−3abc`

     `=(a+b)^3−3ab(a+b)+c^3−3abc`

     `=[(a+b)^3+c^3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)^2+c^2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a^2+b^2+2ab+c^2−ac−bc−3ab)`

    `=(a+b+c)(a^2+b^2+c^2−ab−bc−ca)=VP`

8 tháng 3 2017

Biến đổi vế phải ta được:

(a – b)3 + 3ab(a – b)

= a3 – 3a2b + 3ab2 – b3 + 3a2b – 3ab2

= a3 – b3

Vậy a3 – b3 = (a – b)3 + 3ab(a – b)

19 tháng 7 2018

Biến đổi vế phải ta được:

(a + b)3 – 3ab(a + b)

= a3 + 3a2b + 3ab2 + b3 – 3a2b – 3ab2

= a3 + b3

Vậy a3 + b3 = (a + b)3 – 3ab(a + b)

23 tháng 12 2021

M=a3+b3+3ab(a2+b2)+6a2b2(a+b)

M=a3+b3+3ab(a2+b2)+6a2b2(a+b)

=(a+b)(a2−ab+b2)+3ab[(a+b)2−2ab]+6a2b2(a+b)

=(a+b)(a2−ab+b2)+3ab[(a+b)2−2ab]+6a2b2(a+b)

=(a+b)[(a+b)2−3ab]+3ab[(a+b)2−2ab]+6a2b2(a+b)

=(a+b)[(a+b)2−3ab]+3ab[(a+b)2−2ab]+6a2b2(a+b)

Thay a + b = 1 vào biểu thức trên ,có :

1.(12−3ab)+3ab(12−2ab)+6a2b2.11.(12−3ab)+3ab(12−2ab)+6a2b2.1

=1−3ab+3ab−6a2b2+6a2b2=1=1−3ab+3ab−6a2b2+6a2b2

=1

Vậy biểu thức M có giá trị bằng 1 khi a + b = 1