Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $A,B,C$ là 3 đơn thức đồng dạng nên chúng có phần biến như nhau. Đặt \(B=mx^2yz; C=nx^2yz\)
Theo bài ra ta có:
\(A-B+c=2x^2yz-mx^2yz+nx^2yz=(2-m+n)x^2yz=4x^2yz\)
\(\Rightarrow 2-m+n=4\Rightarrow n=2+m\)
Giá trị của $B$ tại $x=2; y=-3; z=-4$ là:
\(m.2^2.(-3)(-4)=24\Rightarrow m=\frac{1}{2}\)
\(\Rightarrow n=2+m=2+\frac{1}{2}=\frac{5}{2}\)
Vậy \(B=\frac{1}{2}x^2yz; C=\frac{5}{2}x^2yz\)
a) Các đơn thức đồng dạng trong các đơn thức sau là: \(5x^2yz;-2x^2yz\) ; \(x^2yz\) ; \(0,2x^2yz\)
b) \(M\left(x\right)=3x^2+5x^3-x^2+x-3x-4\)
\(M\left(x\right)=(3x^2-x^2)+5x^3+(x-3x)-4\)
\(M\left(x\right)=2x^2+5x^3-2x-4\)
\(M\left(x\right)=5x^3+2x^2-2x-4\)
c) \(P+Q=\left(x^3x+3\right)+\left(2x^3+3x^2+x-1\right)\)
\(P+Q=x^3x+3+2x^3+3x^2+x-1\)
\(P+Q=\left(x^3+2x^3\right)+\left(x+x\right)+\left(3-1\right)+3x^2\)
\(P+Q=3x^3+2x+2+3x^2\)
\(ax^2yz+bx^2yz-\frac{1}{2}x^2yz\)
\(=x^2yz\left(a+b-\frac{1}{2}\right)=a+b-\frac{1}{2}\)
Vậy x = 1 ; y = -1 ; z = -1 thì biểu thức trên nhận giá trị \(a+b-\frac{1}{2}\)
a: \(A=\dfrac{2}{3}xy^2z\cdot\left(-27\right)x^6y^3=-18x^7y^5z\)
C=-5
\(D=\dfrac{1}{2}x^2yz\)
\(E=\dfrac{3}{5}xy\cdot\left(-x^4y^2\right)=-\dfrac{3}{5}x^5y^3\)
\(F=x^2y+\dfrac{3}{7}\)
Các biểu thức A,D,E là đơn thức
b: Không có cặp đơn thức nào đồng dạng
Ace Legona Nguyễn Huy Tú và các bạn khác giúp mk với! HELP ME !!!!!!!!!!!!!!