K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2018

Câu 1 : 

ad=bc => a/b=c/d ( a,b,c,d khác 0 )

=> b/a=d/c

=> 1-b/a=1-d/c

=> a-b/a=c-d/c 

=> a/a-b=c/c-d

=> ĐPCM

Câu 2 : 

Đk để phân số tồn tại là a,b,c khác 0

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

a/b=b/c=c/a=a+b+c/a+b+c=1

=> a=b;b=c;c=a => a=b=c

Khi đó : a^2+b^2+c^2/(a+b+c)^2 = a^2+a^2+a^2/(a+a+a)^2 = 3a^2/9a^2=1/3

=> ĐPCM

k mk nha

1 tháng 1 2018

câu 2 : là (a+b+c)^2 nha mn mình nhầm

27 tháng 12 2016

ta có: \(\frac{a^2+c^2}{b^2+a^2}\)do \(a^2=bc\)

=>\(\frac{a^2+c^2}{b^2+a^2}=\frac{b.c+c.c}{b.b+b.c}=\frac{c.\left(b+c\right)}{b.\left(b+c\right)}=\frac{c}{b}\)

vậy \(\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\)

\(\text{Ta có : }\frac{a^2+c^2}{b^2+a^2}\text{ do }a^2=bc\)

\(\Rightarrow\frac{a^2+c^2}{b^2+a^2}=\frac{b.c+c.c}{b.b+b.c}=\frac{c.\left(b+c\right)}{b.\left(b+c\right)}=\frac{c}{b}\)

\(\text{Vậy }\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\)

21 tháng 9 2017

Ta có: \(a^2=bc\Rightarrow\frac{a^2+c^2}{b^2+a^2}=\frac{bc+c^2}{b^2+bc}=\frac{c\left(b+c\right)}{b\left(b+c\right)}=\frac{c}{b}\)

Vậy \(\frac{a^2+c^2}{b^2+a^2}=\frac{c}{d}\)

21 tháng 9 2017

nó bằng c/d cơ mà

6 tháng 8 2015

b3: Vì x:y:z= a:b:c
nên x/a= y/b=z/c
ADTCCDTSBN, ta có:
x/a=y/b=z/c= (x/a)^2=(y/b)^2=(z/c)^2=(x+y+z)^2
x/a=y/b=z/c suy ra (x/a)^2=(y/b)^2=(z/c)^2=(x+y+z)^2
suy ra x^2/a^2 = y^2/b^2 = z^2/c^2= (x+y+z)^2
ADTCCDTSBN, có:
(x+y+z)^2= x^2/a^2=...=z^2/c^2=x^2+y^2+z^2/a^2+b^2+c^2= x^2+y^2+z^2/1= x^2+y^2+z^2
Vậy...

18 tháng 11 2018

Có \(\frac{a}{b}=\frac{b}{c}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)

Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow a=c.k;b=d.k\)

\(\Rightarrow a^2=c^2.k^2;b^2=d^2.k^2\)

Khi đó \(\frac{a^2+c^2}{b^2+d^2}=\frac{c^2.k^2+c^2}{d^2.k^2+d^2}=\frac{c^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{c^2}{d^2}=\frac{a^2}{b^2}\)

18 tháng 11 2018

Dekisugi Hidetoshi làm hài v:

\(\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}=\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{b}{c}=\frac{a}{c}\)

=> đpcm

p/s: b lấy "d" ở đâu ra vậy :V

-----đã làm sai còn s ủa---