Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+4/a>=2*căn a*4/a=4
b+9/b>=2*căn b*9/b=6
c+16/c>=2*căn c*16/c=8
=>3a/4+b/2+c/4+3/a+9/2b+4/c>=3+3+2=8
a+2b+3c>=20
=>a/4+b/2+3c/4>=5
=>S>=13
Dấu = xảy ra khi a=2; b=3; c=4
\(P=\dfrac{5a+10b+15c}{4}+\left(\dfrac{3}{a}+\dfrac{3a}{4}\right)+\left(\dfrac{9}{2b}+\dfrac{b}{2}\right)+\left(\dfrac{4}{c}+\dfrac{c}{4}\right)\)
\(\ge\dfrac{5\left(a+2b+3c\right)}{4}+2\sqrt{\dfrac{3}{a}.\dfrac{3a}{4}}+2\sqrt{\dfrac{9}{2b}.\dfrac{b}{2}}+2\sqrt{\dfrac{4}{c}.\dfrac{c}{4}}\)
\(\Leftrightarrow P\ge\dfrac{5.20}{4}+3+3+2=33\)
Dấu "=" xảy ra khi a=2;b=3;c=4
Vậy \(P_{min}=33\)
Đúng như bạn Quang viết, GTNN của S là 13 khi \(\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\), nhưng mình cần một lời giải thích vì sao nó lại ra như vậy.
Đặt \(\left(a;2b;3c\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)
\(Q=\dfrac{x+1}{1+y^2}+\dfrac{y+1}{1+z^2}+\dfrac{z+1}{1+x^2}\)
Ta có:
\(\dfrac{x+1}{1+y^2}=x+1-\dfrac{\left(x+1\right)y^2}{1+y^2}\ge x+1-\dfrac{\left(x+1\right)y^2}{2y}=x+1-\dfrac{\left(x+1\right)y}{2}\)
Tương tự:
\(\dfrac{y+1}{1+z^2}\ge y+1-\dfrac{\left(y+1\right)z}{2}\) ; \(\dfrac{z+1}{1+x^2}\ge z+1-\dfrac{\left(z+1\right)x}{2}\)
Cộng vế:
\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{2}\left(xy+yz+zx\right)\)
\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{6}\left(x+y+z\right)^2=\dfrac{3}{2}+3-\dfrac{9}{6}=3\)
\(Q_{min}=3\) khi \(x=y=z=1\) hay \(\left(a;b;c\right)=\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\)
a.
\(\sum\dfrac{ab}{a+c+b+c}\le\dfrac{1}{4}\sum\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)=\dfrac{a+b+c}{4}\)
2.
\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{a+b+2c+2b}\le\dfrac{ab}{9}\left(\dfrac{4}{a+b+2c}+\dfrac{1}{2b}\right)=4.\dfrac{ab}{a+b+2c}+\dfrac{a}{18}\)
Quay lại câu a
\(A=\dfrac{3}{a}+\dfrac{3a}{4}+\dfrac{9}{2b}+\dfrac{b}{2}+\dfrac{4}{c}+\dfrac{c}{4}+\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{3c}{4}\)
Áp dụng bất đẳng thức Cô-si ta được:
\(\dfrac{3}{a}+\dfrac{3a}{4}\ge2\sqrt{\dfrac{3}{a}.\dfrac{3a}{4}}=3\)
\(\dfrac{9}{2b}+\dfrac{b}{2}\ge2\sqrt{\dfrac{9}{2b}.\dfrac{b}{2}}=3\)
\(\dfrac{4}{c}+\dfrac{c}{4}\ge2\sqrt{\dfrac{4}{c}.\dfrac{c}{4}}=2\)
\(\Rightarrow A\ge3+3+2+\dfrac{1}{4}\left(a+2b+3c\right)\)
\(\Rightarrow A\ge8+\dfrac{1}{4}.20=13\)
Vậy Min A=13. Dấu "=" xảy ra \(\Leftrightarrow\) a=2, b=3,c=4