\(\dfrac{3}{a}\)+\(\dfra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2018

\(A=\dfrac{3}{a}+\dfrac{3a}{4}+\dfrac{9}{2b}+\dfrac{b}{2}+\dfrac{4}{c}+\dfrac{c}{4}+\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{3c}{4}\)

Áp dụng bất đẳng thức Cô-si ta được:

\(\dfrac{3}{a}+\dfrac{3a}{4}\ge2\sqrt{\dfrac{3}{a}.\dfrac{3a}{4}}=3\)

\(\dfrac{9}{2b}+\dfrac{b}{2}\ge2\sqrt{\dfrac{9}{2b}.\dfrac{b}{2}}=3\)

\(\dfrac{4}{c}+\dfrac{c}{4}\ge2\sqrt{\dfrac{4}{c}.\dfrac{c}{4}}=2\)

\(\Rightarrow A\ge3+3+2+\dfrac{1}{4}\left(a+2b+3c\right)\)

\(\Rightarrow A\ge8+\dfrac{1}{4}.20=13\)

Vậy Min A=13. Dấu "=" xảy ra \(\Leftrightarrow\) a=2, b=3,c=4

16 tháng 2 2019

bn vô câu hỏi tương tự có hết nhé

2 tháng 7 2017

b) \(\dfrac{1}{3a+2b+c}\le\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{1}{36}\left(\dfrac{3}{a}+\dfrac{2}{b}+\dfrac{1}{c}\right)\)

Tương tự cho 2 cái kia rồi cộng lại

\(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{6}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}.16=\dfrac{8}{3}\)

Đẳng thức xảy ra \(\Leftrightarrow\) ... \(\Leftrightarrow a=b=c=\dfrac{3}{16}\)

2 tháng 7 2017

Mik ko hỉu pn ơi, ngay bước đầu ý

14 tháng 10 2017

frac là gì vậy bạn?.....

5 tháng 6 2018

lm giúp e vs ạkhocroi

AH
Akai Haruma
Giáo viên
2 tháng 1 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Phác Chí Mẫn - Toán lớp 9 | Học trực tuyến

29 tháng 10 2017

Áp dụng BĐT Cô-si

Ta có \(A=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)

\(=\left(\frac{3a}{4}+\frac{3}{a}\right)+\left(\frac{b}{2}+\frac{9}{2b}\right)+\left(\frac{c}{4}+\frac{4}{c}\right)+\left(\frac{a}{4}+\frac{b}{2}+\frac{3c}{4}\right)\)

\(\Rightarrow A\ge2\sqrt{\frac{3a}{4}.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{c}{4}.\frac{4}{c}}+\frac{1}{4}\left(a+2b+3c\right)\)

\(\Rightarrow A\ge13\)

Dấu bằng xảy ra khi\(a=2;b=3;c=4\)

Vậy\(MinA=13\Leftrightarrow\left(a;b;c\right)=\left(2;3;4\right)\)

6 tháng 4 2017

Áp dụng bất đẳng thức cô si cho hai số thực không âm ta có :

\(\dfrac{a^2}{a-1}+4\left(a-1\right)\ge2\sqrt{\dfrac{a^2}{a-1}\times4\left(a-1\right)}=4a\) (1)

\(\dfrac{2b^2}{b-1}+8\left(b-1\right)\ge2\sqrt{\dfrac{2b^2}{b-1}\times8\left(b-1\right)}=8b\) (2)

\(\dfrac{3c^2}{c-1}+12\left(c-1\right)\ge2\sqrt{\dfrac{3c^2}{c-1}\times12\left(c-1\right)}=12c\) (3)

Cộng (1),(2) và (3) vế theo vế ta được :\(P+4a+8b+12c-24\)\(\ge4a+8b+12c\)

\(\Leftrightarrow P\ge24\)

Dấu "=" xảy ra khi :a=b=c=2

Vậy giá trị nhỏ nhất của P=\(\dfrac{a^2}{a-1}+\dfrac{2b^2}{b-1}+\dfrac{3c^2}{c-1}\) là 24 khi a=b=c=2

7 tháng 4 2017

P=\(\dfrac{a^2-1+1}{a-1}+\dfrac{2b^2-2+2}{b-1}+\dfrac{3c^2-3+3}{c-1}\)

=\(\left(a+1+\dfrac{1}{a-1}\right)+\left(2\left(b+1\right)+\dfrac{2}{b-1}\right)+\left(3\left(c+1\right)+\dfrac{3}{c-1}\right)\)

=\(\left(a-1+\dfrac{1}{a-1}\right)+\left(2\left(b-1\right)+\dfrac{2}{b-1}\right)+\left(3\left(c-1\right)+\dfrac{3}{c-1}\right)+12\)áp dụng cosi là đc