K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

Ta có:

\(a^2+b^2+c^2=\frac{b^2-c^2}{3+a^2}+\frac{c^2-a^2}{4+b^2}+\frac{a^2-b^2}{5+c^2}\)

\(\Leftrightarrow a^2+\frac{a^2}{4+b^2}-\frac{a^2}{5+c^2}+b^2+\frac{b^2}{5+c^2}-\frac{b^2}{3+a^2}+c^2+\frac{c^2}{3+a^2}-\frac{c^2}{4+b^2}=0\)

 \(\Leftrightarrow a^2.\frac{b^2c^2+4b^2+5c^2+21}{\left(4+b^2\right)\left(5+c^2\right)}+b^2.\frac{a^2c^2+6a^2+2c^2+13}{\left(3+a^2\right)\left(5+c^2\right)}+c^2.\frac{a^2b^2+3a^2+4b^2+13}{\left(3+a^2\right)\left(4+b^2\right)}=0\)

Dấu = xảy ra khi \(a=b=c=0\)

Thế vô ta có: \(S=2016ab+bc+20c=0\)

26 tháng 3 2017

-  Tớ ko hiểu -_- 

13 tháng 7 2017

\(a^2+b^2+c^2=\frac{b^2-c^2}{a^2+3}+\frac{c^2-a^2}{b^2+4}+\frac{a^2-b^2}{c^2+5}\)

<=>\(a^2-\frac{a^2-b^2}{c^2+5}+b^2-\frac{b^2-c^2}{a^2+3}+c^2-\frac{c^2-a^2}{b^2+4}=0\)

<=>\(\frac{ac^2+4a^2+b^2}{c^2+5}+\frac{ba^2+4b^2+c^2}{a^2+3}+\frac{ab^2+4c^2+a^2}{b^2+4}=0\)

Vì \(VT\ge0\) nên dấu "=" xảy ra khi a=b=c=0 => S = 2017 + bc + 20c=2017+0.0+20.0=2017

8 tháng 7 2017

??? :D ??? thỏa mãn thế để làm j vậy?

AH
Akai Haruma
Giáo viên
9 tháng 11 2019

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt\). Khi đó:

a)

\(\frac{a^2}{a^2+b^2}=\frac{(bt)^2}{(bt)^2+b^2}=\frac{b^2t^2}{b^2(t^2+1)}=\frac{t^2}{t^2+1}(1)\)

\(\frac{c^2}{c^2+d^2}=\frac{(dt)^2}{(dt)^2+d^2}=\frac{d^2t^2}{d^2(t^2+1)}=\frac{t^2}{t^2+1}(2)\)

Từ $(1);(2)$ suy ra đpcm.

b)

\(\left(\frac{a+c}{b+d}\right)^2=\left(\frac{bt+dt}{b+d}\right)^2=\left(\frac{t(b+d)}{b+d}\right)^2=t^2(3)\)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{(bt)^2+(dt)^2}{b^2+d^2}=\frac{t^2(b^2+d^2)}{b^2+d^2}=t^2(4)\)

Từ $(3);(4)\Rightarrow \left(\frac{a+c}{b+d}\right)^2=\frac{a^2+c^2}{b^2+d^2}$ (đpcm)

AH
Akai Haruma
Giáo viên
9 tháng 11 2019

Bài 2:

Từ $a^2=bc\Rightarrow \frac{a}{c}=\frac{b}{a}$

Đặt $\frac{a}{c}=\frac{b}{a}=t\Rightarrow a=ct; b=at$. Khi đó:

a)

$\frac{a^2+c^2}{b^2+a^2}=\frac{(ct)^2+c^2}{(at)^2+a^2}=\frac{c^2(t^2+1)}{a^2(t^2+1)}=\frac{c^2}{a^2}=(\frac{c}{a})^2=\frac{1}{t^2}(1)$

Và:

$\frac{c}{b}=\frac{a}{tb}=\frac{a}{t.at}=\frac{1}{t^2}(2)$

Từ $(1);(2)$ suy ra đpcm.

b)

$\left(\frac{c+2019a}{a+2019b}\right)^2=\left(\frac{c+2019a}{ct+2019at}\right)^2=\left(\frac{c+2019a}{t(c+2019a)}\right)^2=\frac{1}{t^2}(3)$

Từ $(2);(3)$ suy ra đpcm.

29 tháng 3 2017

ai trả lời đúng và đầy đủ, dễ hiểu mk cho thề, hứa, bảo đảm.....:))

Ta có : \(\frac{a^2+b^2}{2}=ab\Rightarrow a^2+b^2=2ab\)

\(\Rightarrow a^2-ab+b^2=0\Rightarrow\left(a-b\right)^2=0\Rightarrow a=b\)

Tương tự : \(\frac{b^2+c^2}{2}=bc\Rightarrow b=c\)

\(\frac{a^2+c^2}{2}=ac\Rightarrow a=c\)

Áp dụng t/c bắc cầu ta dc : \(a=b=c\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3a\times3=9a\)

=>a2+b2=2ab

=>a2-2ab+b2=0

=>(a-b)2=0=>a=b

tương tự=>b=c

=>a=b=c

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3a.3=9a\)

24 tháng 9 2016

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{b}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=\left(1+1+1\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

\(=3+\frac{a^2+b^2}{ab}+\frac{a^2+c^2}{ac}+\frac{b^2+c^2}{bc}\)

\(=3+\frac{a^2+b^2}{\frac{a^2+b^2}{2}}+\frac{a^2+c^2}{\frac{a^2+c^2}{2}}+\frac{b^2+c^2}{\frac{b^2+c^2}{2}}\)

\(=3+2+2+2=9\)