K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2016

\(a^2+b^2+1=a+b+ab\Leftrightarrow2a^2+2b^2+2=2a+2b+2ab\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a-b=0\\a-1=0\\b-1=0\end{cases}\Leftrightarrow}a=b=1\)

AH
Akai Haruma
Giáo viên
9 tháng 6 2024

Lời giải:

$a=b+1\Rightarrow a-b=1$

Khi đó:

$(a+b)(a^2+b^2)(a^4+b^4)=(a-b)(a+b)(a^2+b^2)(a^4+b^4)$

$=(a^2-b^2)(a^2+b^2)(a^4+b^4)=(a^4-b^4)(a^4+b^4)=a^8-b^8$

9 tháng 1 2019

Với mọi a,b ta có : ( a - b )2 \(\ge\)

=> a2 + b2 \(\ge\)2ab => 2 . ( a2 + b2 ) \(\ge\)( a + b )2 = 1

=> a2 + b2 \(\ge\)\(\frac{1}{2}\)

Dấu " = " xảy ra <=> a = b = \(\frac{1}{2}\)

7 tháng 9 2020

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )

4 tháng 7 2019

tham khảo tại link nek:

https://h.vn/hoi-dap/question/500717.html

~ho ktoost~