K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2015

HUHH0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000YYYYYYYYY0000000000000000000000000000000008HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHNNNNNNNNNNNN08YBGY80NNYWYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSXXXXXXXXXXXXXXXXXEEEEEEEEEEEEEEEEEEDCdxxxxxxxxxxxxxxxxxxxxxedrrrrrrrrrrrrrrrrrrcddrrrrrrrrrrrrrrrrrrrrrrcvcc

26 tháng 11 2016

từ từ thui!limdim

26 tháng 11 2016

Cứ bình tĩnh !! =_="

16 tháng 2 2019

1+1=2hay3hay4

Đúng hay sai.

nguyen van viet 

1+1=2 

  đúng đó 

       ĐS:2

   học tốt!!!

14 tháng 8 2015

Vì abc = 1 và a, b, c >0 nên tồn tại x, y, z > 0 sao cho a = x/y , b = y/z , c = z/x 
Thay vào BĐT cần chứng minh ta được 
1/(ab + a + 2) + 1/(bc + b + 2) + 1/(ca + c + 2) 
= yz/(xy + xz + 2yz) + xz/(yz + xy + 2xz) + xy/(xz + yz + 2xy) 
= yz/[(xy + yz) + (xz + yz)] + xz/[(yz + xz) + (xy + xz)] + xy/[(xz + xy) + (yz + xy)] 
Mặt khác, theo Cauchy thì: 
a + b ≥ 2√(ab) 
1/a + 1/b ≥ 2√(1/ab) 
Từ đó: (a + b)(1/a + 1/b) ≥ 4.√(ab/ab) = 4 
<=> 4/(a + b) ≤ 1/a + 1/b 
hay 1/(a + b) ≤ (1/4).(1/a + 1/b) 
Sử dụng BĐT trên thì ta có: 
1/[(xy + yz) + (xz + yz)] ≤ (1/4).[1/(xy + yz) + 1/(xz + yz)] 
Hay 
yz/[(xy + yz) + (xz + yz)] ≤ (1/4).[yz/(xy + yz) + yz/(xz + yz)] ---- (1) 
Tương tự với 2 bộ còn lại 
xz/[(yz + xz) + (xy + xz)] ≤ (1/4).[xz/(yz + xz) + xz/(xy + xz)] ---- (2) 
và 
xy/[(xz + xy) + (yz + xy)] ≤ (1/4).[xy/(xz + xy) + xy/(yz + xy)] ---- (3) 
Cộng Vế (1), (2), (3) và nhóm những đa thức có mẫu chung ta được 
Vế trái ≤ (1/4).[ (xy + yz)/(xy + yz) + (yz + xz)/(zy + xz) + (xz + xy)/(xz + xy)] = 3/4 
Như vậy bài toán đã được chứng minh