Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A = \(1+5+5^2+...+5^{2015}\)
=> 5A = \(5+5^2+5^3+...+5^{2016}\)
=> 5A - A = \(5+5^2+5^3+...+5^{2016}-1-5-5^2-...-5^{2015}\)
=> 4A = \(5^{2016}-1\)
=> A = \(\left(5^{2016}-1\right):4\)
=> A chia hết cho 31
Bài 3:
a: \(3^x=243\)
nên \(3^x=3^5\)
hay x=5
b: \(x^5=32\)
nên \(x^5=2^5\)
hay x=2
c: \(x^6=729\)
\(\Leftrightarrow x^2=9\)
=>x=3 hoặc x=-3
Ta có : \(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(B=\frac{2015}{51}+\frac{2015}{52}+...+\frac{2015}{100}\)
\(=2015\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)
\(\Rightarrow\) \(\frac{B}{A}=\frac{2015\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}=2015\)
\(\Rightarrow\) \(B⋮A\)
A = ( 7+7^2) ( + (7^3+7^2) +...+ ( 7^2013 + 7^2014)
A = 7. (7+7^2) + 7^3.( 7+7^2) +...+ 7^2013 +( 7+7^2)
= 7.8 + 7^3 .8 + ... + 7^2013 .8
Chưa chắc đúng :)
\(A=2+2^2+\left(2^3+2^4+...+2^{2015}\right)\)
\(A=6+\left(2^3.1+2^3.2+...+2^3.2^{2012}\right)\)
\(A=6+2^3.\left(1+2+2^2+...+2^{2012}\right)\)
\(=>A⋮8du6\)
để mk giải thích cho nha:
a=2+2^2+...+2^2015
=2.(1+2+....+2^2014) là số chẵn
mà a=8n+3 =8n+2+1=2.(4n+1)+1 là số lẻ
=> cái đề sai nhá, ko phải mk làm sai