\(A=2+2^2+2^3+.....+2^{104}\)

Chứng minh rằng : \(A⋮15\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017

Ta có: \(A=2+2^2+2^3+2^4+.....+2^{104}\)

               \(=\left(2+2^2+2^3+2^4\right)....+\left(2^{101}+2^{102}+2^{103}+2^{104}\right)\)

                 \(=2.\left(1+2+2^2+2^3\right)+.....+2^{101}.\left(1+2+2^2+2^3\right)\)

                   \(=15.\left(2+....+2^{101}\right)⋮15\)

Vậy \(A⋮15\)

Tương tự, số cộng thêm chính là số dư

10 tháng 11 2017

\(A= 2+2^2+2^3+...+2^{104} => A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^{101}+2^{102}+2^{103}+2^{104}) \)

\(=>A=1.(2+2^2+2^3+2^4)+2^4.(2+2^2+2^3+2^4)+...+2^{100}.(2+2^2+2^3+2^4) =>A=(2+2^2+2^3+2^4).(1+2^4+...+2^{100}) \) chia hết cho \((2+2^2+2^3+2^4)\) . Mà  \(2+2^2+2^3+2^4=30 \) chia hết cho 15

=> A chia hết cho 15

7 tháng 4 2018

Câu 1 : 

Ta có : 

\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)

\(A=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{10000-1}{10000}\)

\(A=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{100^2-1}{100^2}\)

\(A=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{100^2}{100^2}-\frac{1}{100^2}\)

\(A=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{100^2}\)

\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)

Do từ \(2\) đến \(100\) có \(100-2+1=99\) số \(1\) nên : 

\(A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)< 99\) \(\left(1\right)\)

Đặt \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) lại có : 

\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B< 1-\frac{1}{100}< 1\)

\(\Rightarrow\)\(A=99-B>99-1=98\)

\(\Rightarrow\)\(A>98\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(98< A< 99\)

Vậy A không phải là số nguyên 

Chúc bạn học tốt ~ 

7 tháng 4 2018

Bài 2 a) \(\Rightarrow M=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}=\frac{1}{3}-\frac{1}{99}\)

\(=\frac{31}{99}\)

21 tháng 1 2019

haha

28 tháng 3 2019

haha

15 tháng 7 2018

a)=>A=\(1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

Đặt tổng trong ngoặc là M

=>M=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)\(=1-\frac{1}{50}< 1\)

Khi đó A=1+M (M<1)

Ta có công thức :1+x<2 nếu x<1

=>A<1

15 tháng 7 2018

bn ơi A < 2 makk

1 tháng 2 2019

1/A=1.21.22.23.24.25                                                               câu 2 làm tương tự                                                            

A.2=2.22.23.24.25.26                                

A.2-A=(2.22.23.24.25.2 mũ 6)-(1.21.22.23.24.25)

A=26-1

3 A=1+3+32+33+...37

3.A=3+32+33+34...+38

2A=38-1

A=(38-1):2

27 tháng 2 2017

a) 1/2 + 1/3 + 1/4 = 6/12 + 4/12 + 3/12 = 13/12 = 1,083 (số này không phải là số tự nhiên)

Bài b , c cũng làm tương tự.Cách làm này là cách làm của lớp 5

27 tháng 1 2024

Đây là dạng toán nâng cao chuyên đề về so sánh phân số, cấu trúc thi chuyên, thi học sinh giỏi, thi violympic. Hôm nay olm sẽ hướng dẫn em cách giải dạng này như sau.

                Xét dãy số: 2; 3; 4;...; 2023

     Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1  = 1

      Số số hạng của dãy số trên là: (2023 - 2) : 1  + 1  = 2022

     Vì \(\dfrac{3}{2^2}\) = \(\dfrac{3}{4}\) < 1 ; \(\dfrac{8}{3^2}\) = \(\dfrac{3^2-1}{3^2}\) < 1;...; \(\dfrac{2023^2-1}{2023^2}\) < 1 

                 Vậy A là tổng của 2022 phân số mã mỗi phân số đều nhỏ hơn 1

                  ⇒ A < 1 x 2022 = 2022 (1) 

                  Mặt  khác ta có: 
               A =     \(\dfrac{3}{2^2}\) + \(\dfrac{8}{3^2}\) + \(\dfrac{15}{4^2}\) + \(\dfrac{2023^2-1}{2023^2}\)

               A =  1 - \(\dfrac{1}{2^2}\) + 1  - \(\dfrac{1}{3^2}\) + ... + 1 - \(\dfrac{1}{2023^2}\)

              A =  (1 + 1 + 1+ ...+ 1) - (\(\dfrac{1}{2^2}\)  + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\))

              A = 2022 - (\(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + .... + \(\dfrac{1}{2023^2}\))

             Đặt B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + .... + \(\dfrac{1}{2023^2}\)

                \(\dfrac{1}{2^2}\)    < \(\dfrac{1}{1.2}\)  = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)

                  \(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\)   =  \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)

                   \(\dfrac{1}{4^2}\) < \(\dfrac{1}{3.4}\) = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)

                    ............................

                 \(\dfrac{1}{2023^2}\)\(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)

                Cộng vế với vế ta có:

             B <  1 - \(\dfrac{1}{2023}\)

      ⇒ - B > -1 + \(\dfrac{1}{2023}\)

⇒ A = 2022 - B > 2022 - 1 + \(\dfrac{1}{2023}\) = 2021 + \(\dfrac{1}{2023}\) ⇒ A > 2021 (2)

Kết hợp (1) và (2) ta có: 

            2021 < A < 2022

Vậy A không phải là số tự nhiên (đpcm)

 

         

              

21 tháng 4 2024

A = 3. \(\dfrac{1}{1.2}\) - 5. \(\dfrac{1}{2.3}\) + 7. \(\dfrac{1}{3.4}\) + ... + 15. \(\dfrac{1}{7.8}\) -17 . \(\dfrac{1}{8.9}\)